1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
// SPDX-License-Identifier: AGPL-3.0-or-later

//! Contains the [SectoredBuf] type.

use log::error;
use positioned_io::Size;
use safemem::write_bytes;
use std::io::{self, Read, Seek, SeekFrom, Write};

use crate::{
    bterr, error::DisplayErr, suppress_err_if_non_zero, BlockError, BlockMeta, BoxInIoErr,
    Decompose, MetaAccess, Positioned, ReadDual, ReadExt, Result, Sectored, SeekFromExt, SizeExt,
    Split, TrySeek, WriteDual, ZeroExtendable, EMPTY_SLICE,
};

pub use private::SectoredBuf;

mod private {
    use super::*;

    /// A stream which buffers writes and read such that the inner stream only sees reads and writes
    /// of sector length buffers.
    pub struct SectoredBuf<T> {
        inner: T,
        buf: Vec<u8>,
        /// The offset into the inner stream which the zero offset byte in `buf` corresponds to.
        buf_start: usize,
        /// Indicates if the contents of `buf` have been written to, and so whether `buf` needs to
        /// be written back to `inner` before it is refilled.
        dirty: bool,
        /// The current position of this stream, expressed as an offset into the inner stream.
        pos: usize,
    }

    impl<T: Sectored + Read + Seek + AsRef<BlockMeta>> SectoredBuf<T> {
        /// Creates a new [SectoredBuf] which buffers the given stream.
        pub fn new(inner: T) -> Result<SectoredBuf<T>> {
            let sect_sz = inner.sector_sz();
            let mut sectored = SectoredBuf {
                inner,
                buf: Vec::new(),
                buf_start: 0,
                dirty: false,
                pos: 0,
            };
            sectored.buf.resize(sect_sz, 0);
            sectored.inner.rewind()?;
            sectored.fill_internal_buf()?;
            Ok(sectored)
        }
    }

    impl<T: Read + Write + Seek + MetaAccess> SectoredBuf<T> {
        /// Updates the size stored in the metadata of the block.
        pub fn update_size(inner: &mut T, size: usize) -> Result<()> {
            inner.mut_meta_body().access_secrets(|secrets| {
                secrets.size = secrets.size.max(size as u64);
                Ok(())
            })
        }
    }

    impl<T> SectoredBuf<T> {
        /// Returns a reference to the inner stream.
        pub fn get_ref(&self) -> &T {
            &self.inner
        }

        /// Returns a mutable reference to the inner stream.
        pub fn get_mut(&mut self) -> &mut T {
            &mut self.inner
        }

        /// Returns the offset into the internal buffer that corresponds to the current position.
        fn buf_pos(&self) -> usize {
            let buf_pos = self.pos - self.buf_start;
            debug_assert!(buf_pos <= self.buf.len());
            buf_pos
        }
    }

    impl<T: AsRef<BlockMeta>> SectoredBuf<T> {
        fn len(&self) -> usize {
            self.inner
                .as_ref()
                .body
                .secrets()
                .unwrap()
                .size
                .try_into()
                .unwrap()
        }

        /// Returns one more than the last index in the internal buffer which can be read.
        fn buf_end(&self) -> usize {
            let len = self.len();
            let sect_sz = self.sector_sz();
            let limit = len.min(self.buf_start + sect_sz);
            limit - self.buf_start
        }
    }

    impl<T: Read + Seek + AsRef<BlockMeta>> SectoredBuf<T> {
        /// Fills the internal buffer by reading from the inner stream at the current position
        /// and updates `self.buf_start` with the position read from.
        fn fill_internal_buf(&mut self) -> Result<usize> {
            self.buf_start = self.inner.stream_position()?.try_into().box_err()?;
            let read_bytes = if self.buf_start < self.len() {
                let read_bytes = self.inner.fill_buf(&mut self.buf)?;
                if read_bytes < self.buf.len() {
                    return Err(bterr!(BlockError::IncorrectSize {
                        expected: self.buf.len(),
                        actual: read_bytes,
                    }));
                }
                read_bytes
            } else {
                0
            };
            Ok(read_bytes)
        }
    }

    impl<T> Split<SectoredBuf<&'static [u8]>, T> for SectoredBuf<T> {
        fn split(self) -> (SectoredBuf<&'static [u8]>, T) {
            let new_self = SectoredBuf {
                inner: EMPTY_SLICE,
                buf: self.buf,
                buf_start: self.buf_start,
                dirty: self.dirty,
                pos: self.pos,
            };
            (new_self, self.inner)
        }

        fn combine(left: SectoredBuf<&'static [u8]>, right: T) -> Self {
            SectoredBuf {
                inner: right,
                buf: left.buf,
                buf_start: left.buf_start,
                dirty: left.dirty,
                pos: left.pos,
            }
        }
    }

    impl<T> Decompose<T> for SectoredBuf<T> {
        fn into_inner(self) -> T {
            self.inner
        }
    }

    impl<T> Sectored for SectoredBuf<T> {
        fn sector_sz(&self) -> usize {
            self.buf.len()
        }
    }

    impl<T: Seek + Read + Write + MetaAccess> Write for SectoredBuf<T> {
        fn write(&mut self, mut src: &[u8]) -> io::Result<usize> {
            let src_len_start = src.len();
            let mut dest = {
                let buf_pos = self.buf_pos();
                &mut self.buf[buf_pos..]
            };
            while !src.is_empty() {
                if dest.is_empty() {
                    suppress_err_if_non_zero!(src_len_start - src.len(), self.flush());
                    dest = &mut self.buf[..];
                }
                let sz = src.len().min(dest.len());
                dest[..sz].copy_from_slice(&src[..sz]);
                dest = &mut dest[sz..];
                src = &src[sz..];
                self.dirty = sz > 0;
                self.pos += sz;
                Self::update_size(&mut self.inner, self.pos)?;
            }
            Ok(src_len_start - src.len())
        }

        fn flush(&mut self) -> io::Result<()> {
            if !self.dirty {
                return Ok(());
            }

            // Write out the contents of the buffer.
            let sect_sz: u64 = self.sector_sz().try_into().box_err()?;
            let inner_pos = self.inner.stream_position()?;
            let inner_pos_usize: usize = inner_pos.try_into().box_err()?;
            let is_new_sector = self.pos > inner_pos_usize;
            let is_full = (self.buf.len() - self.buf_pos()) == 0;
            let (seek_to, fill_internal_buf) = if is_new_sector {
                if is_full {
                    (inner_pos + sect_sz, true)
                } else {
                    (inner_pos, true)
                }
            } else {
                // The contents of the buffer were previously read from inner, so we write the
                // updated contents to the same offset.
                let sect_start: u64 = self.buf_start.try_into().box_err()?;
                self.inner.seek(SeekFrom::Start(sect_start))?;
                if is_full {
                    (inner_pos, true)
                } else {
                    // This is the one case were we don't have to refill the internal buffer.
                    (inner_pos - sect_sz, false)
                }
            };
            self.inner.write_all(&self.buf)?;
            self.inner.flush()?;

            // Seek to the next position.
            self.inner.seek(SeekFrom::Start(seek_to))?;
            if fill_internal_buf {
                self.fill_internal_buf()?;
            }

            self.dirty = false;
            Ok(())
        }
    }

    impl<T: Read + Write + Seek + MetaAccess> ZeroExtendable for SectoredBuf<T> {
        fn zero_extend(&mut self, num_zeros: u64) -> io::Result<()> {
            if num_zeros == 0 {
                return Ok(());
            }

            let prev_pos = self.pos;
            let num_zeros_sz: usize = num_zeros.try_into().display_err()?;
            self.seek(SeekFrom::End(0))?;
            let end_pos = self.pos + num_zeros_sz;

            {
                let start = self.buf_pos();
                let end = self.buf.len().min(start + num_zeros_sz);
                write_bytes(&mut self.buf[start..end], 0);
                self.dirty = self.dirty || end > start;
                self.pos += end - start;
                Self::update_size(&mut self.inner, self.pos)?;
                self.flush()?;
            }

            if self.pos >= end_pos {
                self.seek(SeekFrom::Start(prev_pos as u64))?;
                return Ok(());
            }

            write_bytes(&mut self.buf, 0);
            let iters = (end_pos - self.pos) / self.buf.len();
            for _ in 0..iters {
                self.dirty = true;
                self.pos += self.buf.len();
                Self::update_size(&mut self.inner, self.pos)?;
                self.flush()?;
            }

            let remain = (end_pos - self.pos) % self.buf.len();
            self.pos += remain;
            self.dirty = remain > 0;
            Self::update_size(&mut self.inner, self.pos)?;
            self.flush()?;

            self.seek(SeekFrom::Start(prev_pos as u64))?;
            Ok(())
        }
    }

    /// Returns the slice of the internal buffer which is ready to be read from.
    /// If the buffer all the bytes in the buffer have been consumed, then the buffer is refilled.
    /// The returned slice will be empty if and only if there are no additional bytes in the
    /// inner stream.
    macro_rules! readable_slice {
        ($self:expr) => {{
            let pos = $self.buf_pos();
            let end = $self.buf_end();
            if pos == end && $self.pos < $self.len() {
                match $self.fill_internal_buf() {
                    Ok(nread) => {
                        if nread > 0 {
                            Ok(&$self.buf[..$self.buf_end()])
                        } else {
                            Ok(&$self.buf[..0])
                        }
                    }
                    Err(err) => Err(err),
                }
            } else {
                Ok(&$self.buf[pos..end])
            }
        }};
    }

    impl<T: Read + Seek + AsRef<BlockMeta>> Read for SectoredBuf<T> {
        fn read(&mut self, mut dest: &mut [u8]) -> io::Result<usize> {
            if self.pos == self.len() {
                return Ok(0);
            }

            let dest_len_start = dest.len();
            let mut src = readable_slice!(self)?;
            while !dest.is_empty() {
                if src.is_empty() {
                    src = suppress_err_if_non_zero!(
                        dest_len_start - dest.len(),
                        readable_slice!(self)
                    );
                    // If `src` is still empty, then we've reached the end of the stream.
                    if src.is_empty() {
                        break;
                    }
                }
                let sz = src.len().min(dest.len());
                dest[..sz].copy_from_slice(&src[..sz]);
                dest = &mut dest[sz..];
                src = &src[sz..];
                self.pos += sz;
            }
            Ok(dest_len_start - dest.len())
        }
    }

    impl<T: Seek + Read + AsRef<BlockMeta>> SectoredBuf<T> {
        /// Seeks this stream to the given position.
        /// If a seek to a different sector is needed then `pre_seek` is called before this seek
        /// is performed. This can be used to flush buffered data, or to prevent the seek if a
        /// flush can't be performed.
        fn seek_impl<F: FnOnce(&mut Self) -> io::Result<()>>(
            &mut self,
            seek_from: SeekFrom,
            pre_seek: F,
        ) -> io::Result<u64> {
            let pos = self.pos as u64;
            let pos_new = seek_from.abs(|| Ok(pos), || self.size_or_err())?;
            let len = self.len();
            if pos_new > len as u64 {
                return Err(io::Error::new(
                    io::ErrorKind::InvalidInput,
                    format!("can't seek to {pos_new}, only {len} bytes total"),
                ));
            }
            let sect_sz = self.sector_sz() as u64;
            let sect_index = pos / sect_sz;
            let sect_index_new = pos_new / sect_sz;
            if sect_index != sect_index_new || sect_sz == pos - self.buf_start as u64 {
                pre_seek(self)?;
                let seek_to = sect_index_new * sect_sz;
                self.inner.seek(SeekFrom::Start(seek_to))?;
                self.fill_internal_buf()?;
            }
            self.pos = pos_new.try_into().box_err()?;
            Ok(pos_new)
        }

        /// Returns a slice of the internal buffer that starts at the given offset in the inner
        /// stream, and which is no longer than the given size. Note that this slice may
        /// be shorter than the `size` parameter if the number of bytes in the internal buffer is
        /// less than `size`.
        pub fn get_buf(&self, offset: u64, size: u64) -> Result<&[u8]> {
            let offset: usize = offset.try_into().unwrap();
            let size: usize = size.try_into().unwrap();
            let sect_sz = self.sector_sz();
            let index = offset / sect_sz;
            if self.buf_start != sect_sz * index {
                return Err(bterr!(
                    "SectoredBuf in wrong position to return buf for offset {offset}, size {size}"
                ));
            }
            let start = offset % sect_sz;
            let end = self.buf.len().min(start + size);
            Ok(&self.buf[start..end])
        }
    }

    impl<T: Seek + Read + Write + MetaAccess> Seek for SectoredBuf<T> {
        fn seek(&mut self, seek_from: SeekFrom) -> io::Result<u64> {
            self.seek_impl(seek_from, |sich| sich.flush())
        }
    }

    impl<T: Read + Seek + AsRef<BlockMeta>> TrySeek for SectoredBuf<T> {
        fn try_seek(&mut self, seek_from: SeekFrom) -> io::Result<()> {
            self.seek_impl(seek_from, |sich| {
                if sich.dirty {
                    Err(io::Error::new(
                        io::ErrorKind::Unsupported,
                        "SectoredBuf::try_seek failed because it has unwritten data",
                    ))
                } else {
                    Ok(())
                }
            })?;
            Ok(())
        }
    }

    impl<U, T: AsRef<U>> AsRef<U> for SectoredBuf<T> {
        fn as_ref(&self) -> &U {
            self.inner.as_ref()
        }
    }

    impl<U, T: AsMut<U>> AsMut<U> for SectoredBuf<T> {
        fn as_mut(&mut self) -> &mut U {
            self.inner.as_mut()
        }
    }

    impl<T: AsRef<BlockMeta>> Size for SectoredBuf<T> {
        /// Returns the size of the block, which the value stored in the block's metadata, not
        /// the length of the inner stream.
        fn size(&self) -> io::Result<Option<u64>> {
            Ok(Some(self.inner.as_ref().body.secrets()?.size))
        }
    }

    impl<T: Read + Write + Seek + MetaAccess> WriteDual for SectoredBuf<T> {
        fn write_from<R: Read>(&mut self, mut read: R, mut count: usize) -> io::Result<usize> {
            let pos_start = self.pos;
            let mut dest = {
                let pos = self.buf_pos();
                &mut self.buf[pos..]
            };
            let dest_len = dest.len();
            dest = &mut dest[..dest_len.min(count)];
            while count > 0 {
                if dest.is_empty() {
                    suppress_err_if_non_zero!(self.pos - pos_start, self.flush());
                    dest = &mut self.buf[..];
                    let dest_len = dest.len();
                    dest = &mut dest[..dest_len.min(count)];
                }
                let nread = suppress_err_if_non_zero!(self.pos - pos_start, read.read(dest));
                if 0 == nread {
                    break;
                }
                self.dirty = true;
                dest = &mut dest[nread..];
                self.pos += nread;
                count -= nread;
                self.inner.mut_meta_body().access_secrets(|secrets| {
                    secrets.size = secrets.size.max(self.pos as u64);
                    Ok(())
                })?;
            }
            Ok(self.pos - pos_start)
        }
    }

    impl<T: Read + Seek + AsRef<BlockMeta>> ReadDual for SectoredBuf<T> {
        fn read_into<W: Write>(&mut self, mut write: W, mut count: usize) -> io::Result<usize> {
            let pos_start = self.pos;
            let mut src = readable_slice!(self)?;
            src = &src[..src.len().min(count)];
            while count > 0 {
                if src.is_empty() {
                    src = suppress_err_if_non_zero!(self.pos - pos_start, readable_slice!(self));
                    src = &src[..src.len().min(count)];
                    // If `src` is still empty, then we've reached the end of the stream.
                    if src.is_empty() {
                        break;
                    }
                }
                let written = write.write(src)?;
                src = &src[written..];
                self.pos += written;
                count -= written;
            }
            Ok(self.pos - pos_start)
        }
    }

    impl<T> Positioned for SectoredBuf<T> {
        fn pos(&self) -> usize {
            self.pos
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::{
        test_helpers::{
            integer_array, read_check, write_fill, BtCursor, Randomizer, SectoredCursor,
            SECTOR_SZ_DEFAULT,
        },
        Cursor,
    };

    fn make_sectored_buf(sect_sz: usize, sect_ct: usize) -> SectoredBuf<SectoredCursor<Vec<u8>>> {
        SectoredBuf::new(SectoredCursor::new(vec![0u8; sect_sz * sect_ct], sect_sz))
            .expect("compose for sectored buffer failed")
    }

    #[test]
    fn sectored_buf_fill_inner() {
        const SECT_SZ: usize = SECTOR_SZ_DEFAULT;
        const SECT_CT: usize = 16;
        let mut sectored = make_sectored_buf(SECT_SZ, SECT_CT);
        let sect_sz = sectored.sector_sz();
        assert_eq!(0, sect_sz % 16);
        let chunk_sz = sect_sz / 16;
        let chunk_ct = SECT_CT * 16;
        write_fill(&mut sectored, chunk_sz, chunk_ct);
    }

    #[test]
    fn sectored_buf_write_read_sequential() {
        const SECT_SZ: usize = SECTOR_SZ_DEFAULT;
        const SECT_CT: usize = 16;
        let mut sectored = make_sectored_buf(SECT_SZ, SECT_CT);
        let sect_sz = sectored.sector_sz();
        assert_eq!(0, sect_sz % 16);
        let chunk_sz = sect_sz / 16;
        // We subtract one here so that the underlying buffer is not completely filled. This
        // exercises the length limiting capability of the sectored buffer.
        let chunk_ct = SECT_CT * 16 - 1;
        write_fill(&mut sectored, chunk_sz, chunk_ct);
        sectored.seek(SeekFrom::Start(0)).expect("seek failed");
        read_check(&mut sectored, chunk_sz, chunk_ct);
    }

    #[test]
    fn sectored_buf_len_preserved() {
        const SECT_SZ: usize = SECTOR_SZ_DEFAULT;
        const SECT_CT: usize = 16;
        let mut sectored = make_sectored_buf(SECT_SZ, SECT_CT);
        let expected = vec![42u8; 12];
        // We need to ensure that writing expected will not fill up the buffer in sectored.
        assert!(expected.len() < sectored.sector_sz());

        sectored.write_all(&expected).expect("write failed");
        sectored.flush().expect("flush failed");
        let inner = sectored.into_inner();
        let mut sectored = SectoredBuf::new(inner).expect("failed to compose sectored buffer");
        let mut actual = vec![0u8; expected.len()];
        sectored
            .fill_buf(actual.as_mut_slice())
            .expect("failed to fill actual");

        assert_eq!(expected, actual);
    }

    #[test]
    fn sectored_buf_seek() {
        let sect_sz = 16usize;
        let sect_ct = 16usize;
        let cap = sect_sz * sect_ct - std::mem::size_of::<usize>();
        let source = {
            let mut source = Vec::with_capacity(cap);
            source.extend(
                std::iter::successors(Some(0u8), |n| if *n <= 254 { Some(*n + 1) } else { None })
                    .take(cap),
            );
            source
        };
        let mut sectored = make_sectored_buf(sect_sz, sect_ct);
        sectored.write(&source).expect("write failed");
        let mut buf = [0u8; 1];
        let end = cap.try_into().expect("cap cannot fit into a u8");
        for pos in (0..end).rev() {
            sectored
                .seek(SeekFrom::Start(pos as u64))
                .expect("seek failed");
            sectored.read(&mut buf).expect("read failed");
            assert_eq!(pos, buf[0]);
        }
    }

    /// Tests that data written can be read from the buffer without an intervening call to `flush`.
    #[test]
    fn sectored_buf_write_then_read() {
        const EXPECTED: &[u8] = b"alpha";
        let mut sectored = make_sectored_buf(4096, 1);
        sectored.write(EXPECTED).expect("write failed");
        sectored.seek(SeekFrom::Start(0)).expect("seek failed");
        let mut actual = [0u8; EXPECTED.len()];
        sectored.read(&mut actual).expect("read failed");
        assert_eq!(EXPECTED, actual);
    }

    #[test]
    fn sectored_buf_write_read_random() {
        const SECT_SZ: usize = 16;
        const SECT_CT: usize = 16;
        const CAP: usize = SECT_SZ * SECT_CT - std::mem::size_of::<usize>();
        let source = {
            let mut expected = Vec::with_capacity(CAP);
            expected.extend(
                std::iter::successors(Some(0u8), |n| if *n <= 254 { Some(*n + 1) } else { None })
                    .take(CAP),
            );
            expected
        };
        let indices: Vec<(usize, usize)> = {
            let rando = Randomizer::new([3u8; Randomizer::HASH.len()]);
            let rando2 = Randomizer::new([5u8; Randomizer::HASH.len()]);
            rando
                .zip(rando2)
                .take(SECT_CT)
                .map(|(mut first, mut second)| {
                    first %= source.len();
                    second &= source.len();
                    let low = first.min(second);
                    let high = first.max(second);
                    (low, high)
                })
                .collect()
        };

        let mut sectored = make_sectored_buf(SECT_SZ, SECT_CT);
        sectored
            .write_all(&[0u8; CAP])
            .expect("failed to fill sectored");
        sectored.flush().expect("flush failed");
        for (_k, (low, high)) in indices.iter().enumerate() {
            sectored
                .seek(SeekFrom::Start(*low as u64))
                .expect("seek failed");
            let src = &source[*low..*high];
            sectored.write(src).expect("write failed");
        }
        sectored.flush().expect("flush failed");
        let mut buf = vec![0u8; CAP];
        for (_k, (low, high)) in indices.iter().enumerate() {
            sectored
                .seek(SeekFrom::Start(*low as u64))
                .expect("seek failed");
            let actual = &mut buf[*low..*high];
            sectored.fill_buf(actual).expect("read failed");
            let expected = &source[*low..*high];
            assert_eq!(expected, actual);
        }
    }

    #[test]
    fn sectored_buf_read_past_end() {
        const LEN: usize = 32;
        let mut sectored =
            SectoredBuf::new(SectoredCursor::new([0u8; LEN], LEN)).expect("compose failed");
        const BUF_LEN: usize = LEN + 1;
        sectored.write(&[1u8; BUF_LEN - 1]).expect("write failed");
        sectored.seek(SeekFrom::Start(0)).expect("seek failed");
        let mut buf = [0u8; BUF_LEN];
        // Note that buf is one byte longer than the available capacity in the cursor.
        sectored.read(&mut buf).expect("read failed");
        assert_eq!(&[1u8; BUF_LEN - 1], &buf[..(BUF_LEN - 1)]);
        assert_eq!(0u8, buf[BUF_LEN - 1]);
    }

    /// Tests that the data written in try_compose is actually written back to the underlying stream.
    #[test]
    fn sectored_buf_write_back() {
        let mut sectored =
            SectoredBuf::new(SectoredCursor::new(vec![0u8; 24], 16)).expect("compose failed");
        let expected = [1u8; 8];
        sectored.write(&expected).expect("first write failed");
        sectored.write(&[2u8; 8]).expect("second write failed");
        sectored.seek(SeekFrom::Start(0)).expect("seek failed");
        let mut actual = [0u8; 8];
        sectored.read(&mut actual).expect("read failed");
        assert_eq!(expected, actual);
    }

    #[test]
    fn sectored_buf_write_past_end() {
        const LEN: usize = 8;
        let mut sectored =
            SectoredBuf::new(SectoredCursor::new(vec![0u8; 0], LEN)).expect("compos failed");
        let expected = [1u8; LEN + 1];
        sectored.write(&expected).expect("write failed");
        sectored.seek(SeekFrom::Start(0)).expect("seek failed");
        let mut actual = [0u8; LEN + 1];
        sectored.read(&mut actual).expect("read failed");
        assert_eq!(expected, actual);
    }

    #[test]
    fn read_into_count_limits_read_bytes() {
        const DATA: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), DATA.len())).unwrap();

        sectored.write(&DATA).unwrap();
        sectored.rewind().unwrap();
        let mut actual = BtCursor::new([0u8; DATA.len()]);
        let read = sectored.read_into(&mut actual, DATA.len() - 1).unwrap();
        assert_eq!(DATA.len() - 1, read);

        assert_eq!([0, 1, 2, 3, 4, 5, 6, 0], actual.into_inner());
    }

    #[test]
    fn read_into_read_spans_multiple_sectors() {
        const DATA: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), DATA.len())).unwrap();

        sectored.write(&DATA).unwrap();
        sectored.write(&DATA).unwrap();
        sectored.rewind().unwrap();
        const ACTUAL_LEN: usize = DATA.len() + DATA.len() / 2;
        let mut actual = BtCursor::new([0u8; ACTUAL_LEN]);
        let read = sectored.read_into(&mut actual, ACTUAL_LEN).unwrap();
        assert_eq!(ACTUAL_LEN, read);

        assert_eq!([0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3], actual.into_inner());
    }

    /// Tests that a read asking for more bytes than the number available returns the number
    /// available.
    #[test]
    fn read_into_read_past_len() {
        const DATA: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), DATA.len())).unwrap();

        sectored.write(&DATA).unwrap();
        sectored.rewind().unwrap();
        const ACTUAL_LEN: usize = DATA.len() + 1;
        let mut actual = BtCursor::new([0u8; ACTUAL_LEN]);
        let read = sectored.read_into(&mut actual, ACTUAL_LEN).unwrap();
        assert_eq!(DATA.len(), read);

        assert_eq!([0, 1, 2, 3, 4, 5, 6, 7, 0], actual.into_inner());
    }

    #[test]
    fn write_from_full_cursor() {
        const DATA: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), DATA.len())).unwrap();

        let written = sectored
            .write_from(BtCursor::new(DATA), DATA.len())
            .unwrap();
        assert_eq!(DATA.len(), written);
        sectored.flush().unwrap();

        assert_eq!(&DATA, sectored.into_inner().into_inner().as_slice());
    }

    #[test]
    fn write_from_count_limits_bytes_read() {
        const DATA: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), DATA.len())).unwrap();
        let mut cursor = BtCursor::new(DATA);

        let written = sectored.write_from(&mut cursor, DATA.len() / 2).unwrap();
        assert_eq!(DATA.len() / 2, written);
        sectored.flush().unwrap();

        assert_eq!(
            &[0, 1, 2, 3, 0, 0, 0, 0],
            sectored.into_inner().into_inner().as_slice()
        );
        let mut remaining = Vec::new();
        cursor.read_to_end(&mut remaining).unwrap();
        assert_eq!(&[4, 5, 6, 7], remaining.as_slice());
    }

    #[test]
    fn write_from_write_spans_multiple_sectors() {
        const SECT_SZ: usize = 4;
        const DATA: [u8; SECT_SZ + 1] = [0, 1, 2, 3, 4];
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), SECT_SZ)).unwrap();

        let written = sectored
            .write_from(BtCursor::new(DATA), DATA.len())
            .unwrap();
        assert_eq!(DATA.len(), written);
        sectored.rewind().unwrap();
        let mut actual = Vec::new();
        sectored.read_to_end(&mut actual).unwrap();

        assert_eq!(&[0, 1, 2, 3, 4], actual.as_slice());
    }

    #[test]
    fn try_seek_to_second_sector() {
        const SECT_SZ: usize = 4;
        const DATA_LEN: usize = 2 * SECT_SZ;
        const DATA: [u8; DATA_LEN] = integer_array::<DATA_LEN>(0);
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), SECT_SZ)).unwrap();

        let written = sectored
            .write_from(BtCursor::new(DATA), DATA.len())
            .unwrap();
        assert_eq!(DATA.len(), written);
        sectored.rewind().unwrap();
        const OFFSET: u64 = SECT_SZ as u64 + 1;
        sectored.try_seek(SeekFrom::Start(OFFSET)).unwrap();
        let mut actual = BtCursor::new(Vec::new());
        sectored.read_into(&mut actual, SECT_SZ).unwrap();

        const EXPECTED_LEN: usize = SECT_SZ - 1;
        const EXPECTED: [u8; EXPECTED_LEN] = integer_array::<EXPECTED_LEN>(OFFSET as u8);
        assert_eq!(&EXPECTED, actual.into_inner().as_slice());
    }

    #[test]
    fn seek_past_end_is_error() {
        const SECT_SZ: usize = 4;
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), SECT_SZ)).unwrap();

        let result = sectored.seek(SeekFrom::Start(1));

        let matched = if let Err(err) = result {
            io::ErrorKind::InvalidInput == err.kind()
        } else {
            false
        };
        assert!(matched);
    }

    #[test]
    fn seek_to_zero_when_empty() {
        const SECT_SZ: usize = 4;
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), SECT_SZ)).unwrap();

        let pos = sectored.seek(SeekFrom::Start(0)).unwrap();

        assert_eq!(0, pos);
    }

    #[test]
    fn read_into_consumes_remaining_sector() {
        // SECT_SZ % 2 is assumed be 0.
        const SECT_SZ: usize = 4;
        const DATA_LEN: usize = 2 * SECT_SZ;
        const DATA: [u8; DATA_LEN] = integer_array::<DATA_LEN>(0);
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), SECT_SZ)).unwrap();

        sectored.write(&DATA).unwrap();
        const MID_FIRST: usize = SECT_SZ / 2;
        sectored.seek(SeekFrom::Start(MID_FIRST as u64)).unwrap();
        // Notice that the `count` argument plus the current `sectored.pos` equals `SECT_SZ`.
        // This will cause `pos / sect_sz` to increase by one, but without incrementing
        // `buf_start`. This creates a special case that `seek_impl` has to take into account.
        sectored
            .read_into(&mut BtCursor::new([0u8; MID_FIRST]), MID_FIRST)
            .unwrap();
        const MID_SECOND: u64 = 3 * SECT_SZ as u64 / 2;
        sectored.try_seek(SeekFrom::Start(MID_SECOND)).unwrap();

        const EXPECTED_LEN: usize = SECT_SZ / 2;
        const EXPECTED: [u8; EXPECTED_LEN] = integer_array::<EXPECTED_LEN>(MID_SECOND as u8);
        let mut actual = BtCursor::new(Vec::new());
        let nread = sectored.read_into(&mut actual, EXPECTED_LEN).unwrap();
        assert_eq!(EXPECTED_LEN, nread);
        assert_eq!(&EXPECTED, actual.into_inner().as_slice());
    }

    #[test]
    fn read_into_reads_nothing_when_at_end() {
        const SECT_SZ: usize = 8;
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), SECT_SZ)).unwrap();

        sectored.write([1u8; 6].as_slice()).unwrap();
        let mut actual = Cursor::new(Vec::new());
        sectored.read_into(&mut actual, SECT_SZ).unwrap();

        assert_eq!(&[0u8; 0], actual.get_ref().as_slice());
    }

    #[test]
    fn zero_extend_less_than_sect_sz() {
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), 8)).unwrap();

        let written = sectored.write([1u8; 4].as_slice()).unwrap();
        assert_eq!(4, written);
        sectored.zero_extend(2).unwrap();
        sectored.rewind().unwrap();
        let mut actual = Cursor::new(Vec::new());
        sectored.read_into(&mut actual, 8).unwrap();

        assert_eq!(&[1, 1, 1, 1, 0, 0], actual.get_ref().as_slice());
    }

    #[test]
    fn zero_extend_multiple_sectors() {
        const SECT_SZ: usize = 8;
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), SECT_SZ)).unwrap();

        let written = sectored.write([1u8; SECT_SZ / 2].as_slice()).unwrap();
        assert_eq!(SECT_SZ / 2, written);
        const EXPECTED_LEN: usize = 3 * SECT_SZ / 2;
        sectored.rewind().unwrap();
        // Note that zero_extend is called when the current position is 0. The current position
        // must not affect zero extension.
        sectored.zero_extend(EXPECTED_LEN as u64).unwrap();
        let mut actual = Cursor::new(Vec::new());
        sectored
            .read_into(&mut actual, EXPECTED_LEN + SECT_SZ / 2)
            .unwrap();

        let actual = actual.into_inner();
        assert_eq!(&[1, 1, 1, 1], &actual[..(SECT_SZ / 2)]);
        assert_eq!(&[0u8; EXPECTED_LEN], &actual[(SECT_SZ / 2)..]);
    }

    #[test]
    fn zero_extend_multiple_sectors_with_remainder() {
        const SECT_SZ: usize = 8;
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), SECT_SZ)).unwrap();

        let written = sectored.write([1u8; SECT_SZ / 2].as_slice()).unwrap();
        assert_eq!(SECT_SZ / 2, written);
        // Notice that the total length of the inner stream will be 2 * SECT_SZ + 1.
        const EXPECTED_LEN: usize = 3 * SECT_SZ / 2 + 1;
        sectored.rewind().unwrap();
        sectored.zero_extend(EXPECTED_LEN as u64).unwrap();
        let mut actual = Cursor::new(Vec::new());
        sectored
            .read_into(&mut actual, EXPECTED_LEN + SECT_SZ / 2)
            .unwrap();

        let actual = actual.into_inner();
        assert_eq!(&[1, 1, 1, 1], &actual[..(SECT_SZ / 2)]);
        assert_eq!(&[0u8; EXPECTED_LEN], &actual[(SECT_SZ / 2)..]);
    }

    #[test]
    fn get_buf() {
        const SECT_SZ: usize = crate::SECTOR_SZ_DEFAULT;
        const DIVISOR: usize = 8;
        const READ_SZ: usize = SECT_SZ / DIVISOR;
        let mut sectored = SectoredBuf::new(SectoredCursor::new(Vec::new(), SECT_SZ)).unwrap();
        let mut expected = vec![0u8; READ_SZ];

        for index in 0..(DIVISOR as u8 + 1) {
            expected.fill(index + 1);
            sectored.write(&expected).unwrap();
        }

        sectored.rewind().unwrap();
        for index in 0..(DIVISOR as u8 + 1) {
            let offset = (READ_SZ * index as usize) as u64;
            sectored.try_seek(SeekFrom::Start(offset)).unwrap();
            let actual = sectored.get_buf(offset, READ_SZ as u64).unwrap();
            expected.fill(index + 1);
            assert!(actual == expected);
        }
    }
}