1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
// SPDX-License-Identifier: AGPL-3.0-or-later
use crate::{
    bterr,
    crypto::{Error, HashKind, Result, SymKey, SymParams},
    Decompose, Sectored, Split, TryCompose, EMPTY_SLICE,
};
use openssl::symm::{Crypter, Mode};
use positioned_io::Size;
use std::io::{self, Read, Seek, SeekFrom, Write};

pub use private::SecretStream;

mod private {
    use super::*;

    const IV_BUF_LEN: usize = HashKind::Sha2_512.len();

    // A stream which encrypts all data written to it and decrypts all data read from it.
    pub struct SecretStream<T> {
        inner: T,
        // The sector size of the inner stream. Reads and writes are only executed using buffers of
        // this size.
        inner_sect_sz: usize,
        // The sector size of this stream. Reads and writes are only accepted for buffers of this size.
        sect_sz: usize,
        key: SymKey,
        /// Buffer for ciphertext.
        ct_buf: Vec<u8>,
        /// Buffer for plaintext.
        pt_buf: Vec<u8>,
        iv_buf: [u8; IV_BUF_LEN],
    }

    impl<T> SecretStream<T> {
        pub fn get_ref(&self) -> &T {
            &self.inner
        }

        pub fn get_mut(&mut self) -> &mut T {
            &mut self.inner
        }

        /// Given an offset into this stream, produces the corresponding offset into the inner stream.
        fn inner_offset(&self, outer_offset: u64) -> u64 {
            let sect_sz = self.sect_sz as u64;
            let inner_sect_sz = self.inner_sect_sz as u64;
            // We return the offset into the current sector, plus the size of all previous sectors.
            outer_offset % sect_sz + outer_offset / sect_sz * inner_sect_sz
        }

        /// Given an offset into the inner stream, returns the corresponding offset into this stream.
        fn outer_offset(&self, inner_offset: u64) -> u64 {
            let sect_sz = self.sect_sz as u64;
            let inner_sect_sz = self.inner_sect_sz as u64;
            inner_offset % inner_sect_sz + inner_offset / inner_sect_sz * sect_sz
        }
    }

    macro_rules! sym_params {
        ($self:expr) => {{
            let inner_offset = $self.inner.stream_position()?;
            let SymParams { cipher, key, iv } = $self.key.params();
            let iv = iv.ok_or_else(|| bterr!("no IV was present in block key"))?;
            let kind = if iv.len() <= HashKind::Sha2_256.len() {
                HashKind::Sha2_256
            } else {
                HashKind::Sha2_512
            };
            debug_assert!(iv.len() <= kind.len());
            kind.digest(
                &mut $self.iv_buf,
                [inner_offset.to_le_bytes().as_slice(), iv].into_iter(),
            )?;
            let iv = &$self.iv_buf[..iv.len()];
            Ok::<_, io::Error>(SymParams {
                cipher,
                key,
                iv: Some(iv),
            })
        }};
    }

    impl SecretStream<()> {
        pub fn new(key: SymKey) -> SecretStream<()> {
            SecretStream {
                inner: (),
                inner_sect_sz: 0,
                sect_sz: 0,
                key,
                ct_buf: Vec::new(),
                pt_buf: Vec::new(),
                iv_buf: [0u8; IV_BUF_LEN],
            }
        }
    }

    impl<T> Split<SecretStream<&'static [u8]>, T> for SecretStream<T> {
        fn split(self) -> (SecretStream<&'static [u8]>, T) {
            let new_self = SecretStream {
                inner: EMPTY_SLICE,
                inner_sect_sz: self.inner_sect_sz,
                sect_sz: self.sect_sz,
                key: self.key,
                ct_buf: self.ct_buf,
                pt_buf: self.pt_buf,
                iv_buf: [0u8; IV_BUF_LEN],
            };
            (new_self, self.inner)
        }

        fn combine(left: SecretStream<&'static [u8]>, right: T) -> Self {
            SecretStream {
                inner: right,
                inner_sect_sz: left.inner_sect_sz,
                sect_sz: left.sect_sz,
                key: left.key,
                ct_buf: left.ct_buf,
                pt_buf: left.pt_buf,
                iv_buf: [0u8; IV_BUF_LEN],
            }
        }
    }

    impl<T> Decompose<T> for SecretStream<T> {
        fn into_inner(self) -> T {
            self.inner
        }
    }

    impl<T, U: Sectored> TryCompose<U, SecretStream<U>> for SecretStream<T> {
        type Error = crate::Error;
        fn try_compose(mut self, inner: U) -> Result<SecretStream<U>> {
            let inner_sect_sz = inner.sector_sz();
            let expansion_sz = self.key.expansion_sz();
            let sect_sz = inner_sect_sz - expansion_sz;
            let block_sz = self.key.block_size();
            if 0 != sect_sz % block_sz {
                return Err(bterr!(Error::IndivisibleSize {
                    divisor: block_sz,
                    actual: sect_sz,
                }));
            }
            self.ct_buf.resize(inner_sect_sz, 0);
            self.pt_buf.resize(inner_sect_sz + block_sz, 0);
            Ok(SecretStream {
                inner,
                inner_sect_sz,
                sect_sz: inner_sect_sz - expansion_sz,
                key: self.key,
                ct_buf: self.ct_buf,
                pt_buf: self.pt_buf,
                iv_buf: [0u8; IV_BUF_LEN],
            })
        }
    }

    impl<T> Sectored for SecretStream<T> {
        fn sector_sz(&self) -> usize {
            self.sect_sz
        }
    }

    impl<T: Write + Seek> Write for SecretStream<T> {
        fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
            self.assert_sector_sz(buf.len())?;

            let SymParams { cipher, key, iv } = sym_params!(self)?;
            self.ct_buf.resize(self.inner_sect_sz, 0);
            let mut encrypter = Crypter::new(cipher, Mode::Encrypt, key, iv)?;
            let mut count = encrypter.update(buf, &mut self.ct_buf)?;
            count += encrypter.finalize(&mut self.ct_buf[count..])?;
            self.ct_buf.truncate(count);

            self.inner.write_all(&self.ct_buf).map(|_| buf.len())
        }

        fn flush(&mut self) -> io::Result<()> {
            self.inner.flush()
        }
    }

    impl<T: Read + Seek> Read for SecretStream<T> {
        fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
            self.assert_sector_sz(buf.len())?;

            // sym_params must be called before reading from the inner stream so that it's position
            // will be correct for the IV calculation.
            let SymParams { cipher, key, iv } = sym_params!(self)?;
            match self.inner.read_exact(&mut self.ct_buf) {
                Ok(_) => (),
                Err(err) => {
                    if err.kind() == io::ErrorKind::UnexpectedEof {
                        return Ok(0);
                    } else {
                        return Err(err);
                    }
                }
            }

            self.pt_buf
                .resize(self.inner_sect_sz + self.key.block_size(), 0);
            let mut decrypter = Crypter::new(cipher, Mode::Decrypt, key, iv)?;
            let mut count = decrypter.update(&self.ct_buf, &mut self.pt_buf)?;
            count += decrypter.finalize(&mut self.pt_buf[count..])?;
            self.pt_buf.truncate(count);

            buf.copy_from_slice(&self.pt_buf);
            Ok(buf.len())
        }
    }

    impl<T: Seek> Seek for SecretStream<T> {
        fn seek(&mut self, pos: io::SeekFrom) -> io::Result<u64> {
            let outer_offset = match pos {
                SeekFrom::Start(offset) => offset,
                SeekFrom::Current(offset) => {
                    let inner_offset = self.inner.stream_position()?;
                    let outer_offset = self.outer_offset(inner_offset);
                    if offset >= 0 {
                        outer_offset + offset as u64
                    } else {
                        outer_offset - (-offset as u64)
                    }
                }
                SeekFrom::End(_) => {
                    // We can support this once stream_len is stabilized:
                    // https://github.com/rust-lang/rust/issues/59359
                    return Err(io::Error::new(
                        io::ErrorKind::Unsupported,
                        "seeking from the end of the stream is not supported",
                    ));
                }
            };
            let inner_offset = self.inner_offset(outer_offset);
            self.inner.seek(SeekFrom::Start(inner_offset))?;
            Ok(outer_offset)
        }
    }

    impl<U, T: AsRef<U>> AsRef<U> for SecretStream<T> {
        fn as_ref(&self) -> &U {
            self.inner.as_ref()
        }
    }

    impl<U, T: AsMut<U>> AsMut<U> for SecretStream<T> {
        fn as_mut(&mut self) -> &mut U {
            self.inner.as_mut()
        }
    }

    impl<T: Size> Size for SecretStream<T> {
        fn size(&self) -> io::Result<Option<u64>> {
            self.inner.size()
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        crypto::SymKeyKind,
        test_helpers::{Randomizer, SectoredCursor},
        SECTOR_SZ_DEFAULT,
    };

    use super::*;

    fn secret_stream_sequential_test_case(key: SymKey, inner_sect_sz: usize, sect_ct: usize) {
        let mut stream = SecretStream::new(key)
            .try_compose(SectoredCursor::new(
                vec![0u8; inner_sect_sz * sect_ct],
                inner_sect_sz,
            ))
            .expect("compose failed");
        let sector_sz = stream.sector_sz();
        for k in 0..sect_ct {
            let sector = vec![k as u8; sector_sz];
            stream.write(&sector).expect("write failed");
        }
        stream.seek(SeekFrom::Start(0)).expect("seek failed");
        for k in 0..sect_ct {
            let expected = vec![k as u8; sector_sz];
            let mut actual = vec![0u8; sector_sz];
            stream.read(&mut actual).expect("read failed");
            assert!(expected == actual);
        }
    }

    fn secret_stream_sequential_test_suite(kind: SymKeyKind) {
        let key = SymKey::generate(kind).expect("key generation failed");
        secret_stream_sequential_test_case(key.clone(), SECTOR_SZ_DEFAULT, 16);
    }

    #[test]
    fn secret_stream_encrypt_decrypt_are_inverse_aes256cbc() {
        secret_stream_sequential_test_suite(SymKeyKind::Aes256Cbc)
    }

    #[test]
    fn secret_stream_encrypt_decrypt_are_inverse_aes256ctr() {
        secret_stream_sequential_test_suite(SymKeyKind::Aes256Ctr)
    }

    fn secret_stream_random_access_test_case(
        rando: Randomizer,
        key: SymKey,
        inner_sect_sz: usize,
        sect_ct: usize,
    ) {
        let mut stream = SecretStream::new(key)
            .try_compose(SectoredCursor::new(
                vec![0u8; inner_sect_sz * sect_ct],
                inner_sect_sz,
            ))
            .expect("compose failed");
        let sect_sz = stream.sector_sz();
        let indices: Vec<usize> = rando.take(sect_ct).map(|e| e % sect_ct).collect();
        for index in indices.iter().map(|e| *e) {
            let offset = index * sect_sz;
            stream
                .seek(SeekFrom::Start(offset as u64))
                .expect("seek to write failed");
            let sector = vec![index as u8; sect_sz];
            stream.write(&sector).expect("write failed");
        }
        for index in indices.iter().map(|e| *e) {
            let offset = index * sect_sz;
            stream
                .seek(SeekFrom::Start(offset as u64))
                .expect("seek to read failed");
            let expected = vec![index as u8; sect_sz];
            let mut actual = vec![0u8; sect_sz];
            stream.read(&mut actual).expect("read failed");
            assert_eq!(expected, actual);
        }
    }

    fn secret_stream_random_access_test_suite(kind: SymKeyKind) {
        const SEED: [u8; Randomizer::HASH.len()] = [3u8; Randomizer::HASH.len()];
        let key = SymKey::generate(kind).expect("key generation failed");
        secret_stream_random_access_test_case(
            Randomizer::new(SEED),
            key.clone(),
            SECTOR_SZ_DEFAULT,
            20,
        );
        secret_stream_random_access_test_case(
            Randomizer::new(SEED),
            key.clone(),
            SECTOR_SZ_DEFAULT,
            800,
        );
        secret_stream_random_access_test_case(Randomizer::new(SEED), key.clone(), 512, 200);
        secret_stream_random_access_test_case(Randomizer::new(SEED), key.clone(), 512, 20);
        secret_stream_random_access_test_case(Randomizer::new(SEED), key.clone(), 512, 200);
    }

    #[test]
    fn secret_stream_random_access() {
        secret_stream_random_access_test_suite(SymKeyKind::Aes256Cbc);
        secret_stream_random_access_test_suite(SymKeyKind::Aes256Ctr);
    }

    fn make_secret_stream(
        key_kind: SymKeyKind,
        num_sectors: usize,
    ) -> SecretStream<SectoredCursor<Vec<u8>>> {
        let key = SymKey::generate(key_kind).expect("key generation failed");
        let inner = SectoredCursor::new(
            vec![0u8; num_sectors * SECTOR_SZ_DEFAULT],
            SECTOR_SZ_DEFAULT,
        );
        SecretStream::new(key)
            .try_compose(inner)
            .expect("compose failed")
    }

    #[test]
    fn secret_stream_seek_from_start() {
        let mut stream = make_secret_stream(SymKeyKind::Aes256Cbc, 3);
        let sector_sz = stream.sector_sz();
        let expected = vec![2u8; sector_sz];
        // Write one sector of ones, one sector of twos and one sector of threes.
        for k in 1..4 {
            let sector: Vec<u8> = std::iter::repeat(k as u8).take(sector_sz).collect();
            stream.write(&sector).expect("writing to stream failed");
        }

        stream
            .seek(SeekFrom::Start(sector_sz as u64))
            .expect("seek failed");

        // A read from the stream should now return the second sector, which is filled with twos.
        let mut actual = vec![0u8; sector_sz];
        stream
            .read(&mut actual)
            .expect("reading from stream failed");
        assert_eq!(expected, actual);
    }

    #[test]
    fn secret_stream_seek_from_current() {
        let mut stream = make_secret_stream(SymKeyKind::Aes256Cbc, 3);
        let sector_sz = stream.sector_sz();
        let expected = vec![3u8; sector_sz];
        // Write one sector of ones, one sector of twos and one sector of threes.
        for k in 1..4 {
            let sector: Vec<u8> = std::iter::repeat(k as u8).take(sector_sz).collect();
            stream.write(&sector).expect("writing to stream failed");
        }

        stream
            .seek(SeekFrom::Current(-1 * (sector_sz as i64)))
            .expect("seek failed");

        // A read from the stream should now return the last sector, which is filled with threes.
        let mut actual = vec![0u8; sector_sz];
        stream
            .read(&mut actual)
            .expect("reading from stream failed");
        assert_eq!(expected, actual);
    }
}