1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
// SPDX-License-Identifier: AGPL-3.0-or-later
pub use private::{
    MerkleNode, MerkleStream, MerkleTree, MerkleTreeKind, Sha2_256Node, VariantMerkleTree,
    VecMerkleTree,
};

mod private {
    use crate::{
        bterr,
        crypto::{Error, HashKind, Result},
        trailered::Trailered,
        BoxInIoErr, Decompose, FlushMeta, MetaReader, Sectored, WriteInteg, SECTOR_SZ_DEFAULT,
    };
    use positioned_io::{ReadAt, Size, WriteAt};
    use serde::{Deserialize, Serialize};
    use std::io;
    use strum::EnumDiscriminants;

    /// Returns the base 2 logarithm of the given number. This function will return -1 when given 0,
    /// and this is the only input for which a negative value is returned.
    pub(super) fn log2(n: usize) -> isize {
        if 0 == n {
            -1
        } else {
            n.ilog2().try_into().unwrap()
        }
    }

    /// Returns 2^x. Note that 0 is returned for any negative input.
    pub(super) fn exp2(x: isize) -> usize {
        if x < 0 {
            0
        } else {
            1 << x
        }
    }

    /// Trait for types which can be used as nodes in a `MerkleTree`.
    pub trait MerkleNode: Default + Serialize + for<'de> Deserialize<'de> {
        /// The kind of hash algorithm that this `HashData` uses.
        const KIND: HashKind;

        /// Creates a new `HashData` instance by hashing the data produced by the given iterator and
        /// storing it in self.
        fn new<'a, I: Iterator<Item = &'a [u8]>>(parts: I) -> Result<Self>;

        /// Combines the hash data from the given children and prefix and stores it in self. It is
        /// an error for no children to be provided (though one or the other may be `None`).
        fn combine<'a, I: Iterator<Item = &'a [u8]>>(
            &mut self,
            prefix: I,
            left: Option<&'a Self>,
            right: Option<&'a Self>,
        ) -> Result<()>;

        /// Returns `Ok(())` if self contains the given hash data, and `Err(Error::HashCmpFailure)`
        /// otherwise.
        fn assert_contains(&self, hash_data: Option<&[u8]>) -> Result<()>;

        /// Returns `Ok(())` if self contains the hash of the given data. Otherwise,
        /// `Err(Error::HashCmpFailure)` is returned.
        fn assert_contains_hash_of<'a, I: Iterator<Item = &'a [u8]>>(&self, parts: I)
            -> Result<()>;

        /// Returns `Ok(())` if the result of combining left and right is contained in self.
        fn assert_parent_of<'a, I: Iterator<Item = &'a [u8]>>(
            &self,
            prefix: I,
            left: Option<&'a Self>,
            right: Option<&'a Self>,
        ) -> Result<()>;

        /// Attempts to borrow the data in this node as a slice.
        fn try_as_slice(&self) -> Result<&[u8]>;

        /// Computes the hash of the data produced by the given iterator and writes it to the
        /// given slice.
        fn digest<'a, I: Iterator<Item = &'a [u8]>>(dest: &mut [u8], parts: I) -> Result<()> {
            Self::KIND.digest(dest, parts)
        }
    }

    // TODO: Once full const generic support lands we can use a HashKind as a const param. Then we won't
    // need to have different structs to support different kinds of hashes.
    /// A struct for storing SHA2 256 hashes in a `MerkleTree`.
    #[derive(Default, Serialize, Deserialize)]
    pub struct Sha2_256Node(Option<[u8; HashKind::Sha2_256.len()]>);

    impl Sha2_256Node {
        fn as_slice(&self) -> Option<&[u8]> {
            self.0.as_ref().map(|e| e.as_slice())
        }

        /// Returns a mutable reference to the array contained in self, if the array already exists.
        /// Otherwise, creates a new array filled with zeros owned by self and returns a
        /// reference.
        fn mut_or_init(&mut self) -> &mut [u8] {
            if self.0.is_none() {
                self.0 = Some([0; HashKind::Sha2_256.len()])
            }
            self.0.as_mut().unwrap()
        }

        // I think this is the most complicated function signature I've ever written in any language.
        /// Combines the given slices, together with the given prefix, and stores the resulting hash
        /// in `dest`. If neither `left` nor `right` is `Some`, then `when_neither` is called and
        /// whatever it returns is returned by this method.
        fn combine_hash_data<'a, I: Iterator<Item = &'a [u8]>, F: FnOnce() -> Result<()>>(
            dest: &mut [u8],
            prefix: I,
            left: Option<&'a [u8]>,
            right: Option<&'a [u8]>,
            when_neither: F,
        ) -> Result<()> {
            match (left, right) {
                (Some(left), Some(right)) => {
                    Self::digest(dest, prefix.chain([left, right].into_iter()))
                }
                (Some(left), None) => Self::digest(dest, prefix.chain([left, b"None"].into_iter())),
                (None, Some(right)) => {
                    Self::digest(dest, prefix.chain([b"None", right].into_iter()))
                }
                (None, None) => when_neither(),
            }
        }
    }

    impl MerkleNode for Sha2_256Node {
        const KIND: HashKind = HashKind::Sha2_256;

        fn new<'a, I: Iterator<Item = &'a [u8]>>(parts: I) -> Result<Self> {
            let mut array = [0u8; Self::KIND.len()];
            Self::digest(&mut array, parts)?;
            Ok(Sha2_256Node(Some(array)))
        }

        fn combine<'a, I: Iterator<Item = &'a [u8]>>(
            &mut self,
            prefix: I,
            left: Option<&'a Self>,
            right: Option<&'a Self>,
        ) -> Result<()> {
            let left = left.and_then(|e| e.as_slice());
            let right = right.and_then(|e| e.as_slice());
            Self::combine_hash_data(self.mut_or_init(), prefix, left, right, || {
                Err(bterr!(
                    "at least one argument to combine needs to supply data",
                ))
            })
        }

        fn assert_contains(&self, hash_data: Option<&[u8]>) -> Result<()> {
            if self.as_slice() == hash_data {
                Ok(())
            } else {
                Err(bterr!(Error::HashCmpFailure))
            }
        }

        fn assert_contains_hash_of<'a, I: Iterator<Item = &'a [u8]>>(
            &self,
            parts: I,
        ) -> Result<()> {
            let mut buf = [0u8; Self::KIND.len()];
            Self::digest(&mut buf, parts)?;
            self.assert_contains(Some(&buf))
        }

        fn assert_parent_of<'a, I: Iterator<Item = &'a [u8]>>(
            &self,
            prefix: I,
            left: Option<&'a Self>,
            right: Option<&'a Self>,
        ) -> Result<()> {
            let slice = match self.as_slice() {
                Some(slice) => slice,
                None => return Err(bterr!(Error::HashCmpFailure)),
            };
            let buf = {
                let mut buf = [0u8; Self::KIND.len()];
                let left = left.and_then(|e| e.as_slice());
                let right = right.and_then(|e| e.as_slice());
                Self::combine_hash_data(&mut buf, prefix, left, right, || {
                    Err(bterr!(
                        "logic error encountered, left or right should have been Some"
                    ))
                })?;
                buf
            };
            if slice == buf {
                Ok(())
            } else {
                Err(bterr!(Error::HashCmpFailure))
            }
        }

        fn try_as_slice(&self) -> Result<&[u8]> {
            self.0
                .as_ref()
                .map(|arr| arr.as_slice())
                .ok_or_else(|| bterr!("this merkle node is empty"))
        }
    }

    /// An index into a binary tree. This type provides convenience methods for navigating a tree.
    #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
    struct BinTreeIndex(usize);

    impl BinTreeIndex {
        /// Returns the index of the left child of this node.
        fn left(self) -> Self {
            Self(2 * self.0 + 1)
        }

        /// Returns the index of the right child of this node.
        fn right(self) -> Self {
            Self(2 * (self.0 + 1))
        }

        /// Returns the index of the parent of this node.
        fn parent(self) -> Option<Self> {
            if self.0 > 0 {
                Some(Self((self.0 - 1) / 2))
            } else {
                None
            }
        }

        /// Returns an iterator over the indices of all of this node's ancestors.
        fn ancestors(self) -> impl Iterator<Item = BinTreeIndex> {
            struct ParentIter(Option<BinTreeIndex>);

            impl Iterator for ParentIter {
                type Item = BinTreeIndex;

                fn next(&mut self) -> Option<Self::Item> {
                    let parent = match self.0 {
                        Some(curr) => curr.parent(),
                        None => None,
                    };
                    self.0 = parent;
                    parent
                }
            }

            ParentIter(Some(self))
        }
    }

    pub trait MerkleTree: Sectored {
        /// Checks that the root node contains the given hash data. If it does then `Ok(())` is
        /// returned. If it doesn't, then `Err(Error::HashCmpFailure)` is returned.
        fn assert_root_contains(&mut self, hash_data: Option<&[u8]>) -> Result<()>;

        /// Hashes the given data, adds a new node to the tree with its hash and updates the hashes
        /// of all parent nodes.
        fn write(&mut self, offset: usize, data: &[u8]) -> Result<()>;

        /// Verifies that the given data stored from the given offset into the protected data, has not
        /// been modified.
        fn verify(&self, offset: usize, data: &[u8]) -> Result<()>;

        /// Returns the hash data stored in the root node of the tree. An error is returned if and only
        /// if the tree is empty.
        fn root_hash(&self) -> Result<&[u8]>;
    }

    /// An implementation of a Merkle tree, a tree for storing hashes. This implementation is a binary
    /// tree which stores its nodes in a vector to ensure data locality.
    ///
    /// This type is used to provide integrity protection to a sequence of fixed sized units of data
    /// called sectors. The size of the sectors are determined when the tree is created and cannot
    /// be changed later. The hashes contained in the leaf nodes of this tree are hashes of sectors.
    /// Each sector corresponds to an offset into the protected data, and in order to verify that a
    /// sector has not been modified, you must supply the offset of the sector.
    #[derive(Serialize, Deserialize)]
    pub struct VecMerkleTree<T> {
        nodes: Vec<T>,
        /// The size of the sectors of data that this tree will protect.
        sector_sz: usize,
        #[serde(skip)]
        root_verified: bool,
    }

    impl<T> VecMerkleTree<T> {
        /// A slice to prefix to data being hashed for leaf nodes. It's important that this is different
        /// from `INTERIOR_PREFIX`.
        const LEAF_PREFIX: &'static [u8] = b"Leaf";
        /// A slice to prefix to data being hashed for interior nodes. It's important that this is
        /// different from 'LEAF_PREFIX`.
        const INTERIOR_PREFIX: &'static [u8] = b"Interior";

        /// Creates a new tree with no nodes in it and the given sector size.
        pub fn empty(sector_sz: usize) -> VecMerkleTree<T> {
            VecMerkleTree {
                nodes: Vec::new(),
                sector_sz,
                root_verified: true,
            }
        }

        /// Returns the number of generations in self. This method returns -1 when the tree is empty,
        /// and this is the only case where a negative value is returned.
        fn generations(&self) -> isize {
            log2(self.nodes.len())
        }

        /// Returns the number of nodes in a complete binary tree with the given number of
        /// generations. Note that `generations` is 0-based, so a tree with 1 node has 0 generations,
        /// and a tree with 3 has 1.
        fn len(generations: isize) -> usize {
            if generations >= 0 {
                exp2(generations + 1) - 1
            } else {
                0
            }
        }

        /// Returns a reference to the hash stored in the given node, or `Error::IndexOutOfBounds` if
        /// the given index doesn't exist.
        fn hash_at(&self, index: BinTreeIndex) -> Result<&T> {
            self.nodes.get(index.0).ok_or_else(|| {
                bterr!(Error::IndexOutOfBounds {
                    index: index.0,
                    limit: self.nodes.len(),
                })
            })
        }

        /// Returns the index which corresponds to the given offset into the protected data.
        fn offset_to_index(&self, offset: usize) -> Result<BinTreeIndex> {
            let gens = self.generations();
            let sector_index = offset / self.sector_sz;
            let index_limit = exp2(gens);
            if sector_index >= index_limit {
                return Err(bterr!(Error::InvalidOffset {
                    actual: offset,
                    limit: index_limit * self.sector_sz,
                }));
            }
            Ok(BinTreeIndex(exp2(gens) - 1 + sector_index))
        }

        /// Returns an iterator of slices which need to be hashed along with the data to create a leaf
        /// node.
        fn leaf_parts(data: &[u8]) -> impl Iterator<Item = &[u8]> {
            [Self::LEAF_PREFIX, data].into_iter()
        }

        /// Returns an iterator of slices which need to be hashed along with the data to create an
        /// interior node.
        fn interior_prefix<'a>() -> impl Iterator<Item = &'a [u8]> {
            [Self::INTERIOR_PREFIX].into_iter()
        }
    }

    impl<T: MerkleNode> VecMerkleTree<T> {
        /// Percolates up the hash change to the given node to the root.
        fn perc_up(&mut self, start: BinTreeIndex) -> Result<()> {
            for index in start.ancestors() {
                self.combine_children(index)?;
            }
            Ok(())
        }

        /// Combines the hashes of the given node's children and stores it in the given node.
        fn combine_children(&mut self, index: BinTreeIndex) -> Result<()> {
            let left = index.left();
            let right = index.right();
            // Note that index < left && index < right.
            let split = index.0 + 1;
            let (front, back) = self.nodes.split_at_mut(split);
            let dest = &mut front[front.len() - 1];
            let left = back.get(left.0 - split);
            let right = back.get(right.0 - split);
            dest.combine(Self::interior_prefix(), left, right)
                .map_err(|_| {
                    bterr!(Error::IndexOutOfBounds {
                        index: index.0,
                        limit: Self::len(self.generations() - 1),
                    })
                })
        }
    }

    impl<T: MerkleNode> MerkleTree for VecMerkleTree<T> {
        fn assert_root_contains(&mut self, hash_data: Option<&[u8]>) -> Result<()> {
            match self.hash_at(BinTreeIndex(0)) {
                Ok(root) => {
                    root.assert_contains(hash_data)?;
                    self.root_verified = true;
                    Ok(())
                }
                Err(err) => {
                    let err = err.downcast::<Error>()?;
                    match err {
                        Error::IndexOutOfBounds { .. } => {
                            if hash_data.is_none() {
                                Ok(())
                            } else {
                                Err(bterr!(Error::HashCmpFailure))
                            }
                        }
                        _ => Err(bterr!(err)),
                    }
                }
            }
        }

        fn write(&mut self, offset: usize, data: &[u8]) -> Result<()> {
            self.assert_sector_sz(data.len())?;

            let sector_index = offset / self.sector_sz;
            let generations = self.generations();
            let sector_index_sup = exp2(generations);
            if sector_index >= sector_index_sup {
                // Need to resize the tree.
                let generations_new = log2(sector_index) + 1;
                let new_cap = Self::len(generations_new) - self.nodes.len();
                self.nodes.reserve_exact(new_cap);
                // Extend the vector so there is enough room to fit the current leaves in the last
                // generation.
                let leaf_ct = self.nodes.len() - Self::len(generations - 1);
                let new_len = Self::len(generations_new - 1) + sector_index + 1;
                self.nodes.resize_with(new_len, T::default);
                // Shift all previously allocated nodes down the tree.
                let generation_gap = generations_new - generations;
                for gen in (0..(generations + 1)).rev() {
                    let shift = exp2(gen + generation_gap) - exp2(gen);
                    let start = exp2(gen) - 1;
                    let end = start
                        + if gen == generations {
                            leaf_ct
                        } else {
                            exp2(gen)
                        };
                    for index in start..end {
                        let new_index = index + shift;
                        self.nodes.swap(index, new_index);
                    }
                }
                // Percolate up the old root to ensure that all nodes on the path from the old
                // root to the new root are initialized. This is not needed in the case where the
                // generation gap is only 1, as only the root is uninitialized in this case and it will
                // be initialized after inserting the new node below.
                if generation_gap > 1 && generations >= 0 {
                    self.perc_up(BinTreeIndex(exp2(generation_gap) - 1))?;
                }
            }

            let index = self.offset_to_index(offset)?;
            if index.0 >= self.nodes.len() {
                self.nodes.resize_with(index.0 + 1, T::default);
            }
            self.nodes[index.0] = T::new(Self::leaf_parts(data))?;
            self.perc_up(index)
        }

        /// Verifies that the given data stored from the given offset into the protected data, has not
        /// been modified.
        fn verify(&self, offset: usize, data: &[u8]) -> Result<()> {
            if !self.root_verified {
                return Err(bterr!(Error::RootHashNotVerified));
            }
            self.assert_sector_sz(data.len())?;
            let start = self.offset_to_index(offset)?;
            self.hash_at(start)?
                .assert_contains_hash_of(Self::leaf_parts(data))?;
            for index in start.ancestors() {
                let parent = self.hash_at(index)?;
                let left = self.hash_at(index.left()).ok();
                let right = self.hash_at(index.right()).ok();
                parent.assert_parent_of(Self::interior_prefix(), left, right)?;
            }
            Ok(())
        }

        fn root_hash(&self) -> Result<&[u8]> {
            self.nodes
                .first()
                .map(|node| node.try_as_slice())
                .ok_or_else(|| bterr!("the Merkle tree is empty"))?
        }
    }

    impl<T> Sectored for VecMerkleTree<T> {
        fn sector_sz(&self) -> usize {
            self.sector_sz
        }
    }

    impl<T> Default for VecMerkleTree<T> {
        fn default() -> Self {
            Self::empty(SECTOR_SZ_DEFAULT)
        }
    }

    #[derive(Serialize, Deserialize, EnumDiscriminants)]
    #[strum_discriminants(name(MerkleTreeKind))]
    pub enum VariantMerkleTree {
        Sha2_256(VecMerkleTree<Sha2_256Node>),
    }

    impl VariantMerkleTree {
        pub fn empty(kind: MerkleTreeKind, sector_sz: usize) -> VariantMerkleTree {
            match kind {
                MerkleTreeKind::Sha2_256 => {
                    Self::Sha2_256(VecMerkleTree::<Sha2_256Node>::empty(sector_sz))
                }
            }
        }
    }

    impl Sectored for VariantMerkleTree {
        fn sector_sz(&self) -> usize {
            match self {
                Self::Sha2_256(tree) => tree.sector_sz(),
            }
        }
    }

    impl MerkleTree for VariantMerkleTree {
        fn assert_root_contains(&mut self, hash_data: Option<&[u8]>) -> Result<()> {
            match self {
                Self::Sha2_256(tree) => tree.assert_root_contains(hash_data),
            }
        }

        fn root_hash(&self) -> Result<&[u8]> {
            match self {
                Self::Sha2_256(tree) => tree.root_hash(),
            }
        }

        fn verify(&self, offset: usize, data: &[u8]) -> Result<()> {
            match self {
                Self::Sha2_256(tree) => tree.verify(offset, data),
            }
        }

        fn write(&mut self, offset: usize, data: &[u8]) -> Result<()> {
            match self {
                Self::Sha2_256(tree) => tree.write(offset, data),
            }
        }
    }

    impl Default for MerkleTreeKind {
        fn default() -> Self {
            Self::Sha2_256
        }
    }

    pub struct MerkleStream<T> {
        trailered: Trailered<T, VariantMerkleTree>,
        tree: VariantMerkleTree,
    }

    impl<T: MetaReader> MerkleStream<T> {
        /// Asserts that the root merkle node contains the integrity value given by the inner
        /// stream.
        pub fn assert_root_integrity(&mut self) -> Result<()> {
            let hash_data = self.trailered.meta_body().integrity();
            self.tree.assert_root_contains(hash_data)
        }
    }

    impl<T: ReadAt + Size + Sectored> MerkleStream<T> {
        /// Reads a `MerkleTree` from the end of the given stream and returns a stream which uses
        /// it.
        pub fn new(inner: T) -> Result<MerkleStream<T>> {
            let (trailered, tree) = Trailered::new(inner)?;
            let tree = tree.unwrap_or_else(|| {
                VariantMerkleTree::empty(MerkleTreeKind::default(), trailered.sector_sz())
            });
            Ok(MerkleStream { trailered, tree })
        }

        pub fn with_tree(inner: T, tree: VariantMerkleTree) -> Result<MerkleStream<T>> {
            let (trailered, trailer) = Trailered::new(inner)?;
            if trailer.is_some() {
                return Err(bterr!("stream already contained a serialized merkle tree",));
            }
            Ok(MerkleStream { trailered, tree })
        }
    }

    impl<T> Sectored for MerkleStream<T> {
        fn sector_sz(&self) -> usize {
            self.tree.sector_sz()
        }
    }

    impl<T> Decompose<T> for MerkleStream<T> {
        fn into_inner(self) -> T {
            self.trailered.into_inner()
        }
    }

    impl<T: WriteInteg + Size> WriteAt for MerkleStream<T> {
        fn write_at(&mut self, pos: u64, buf: &[u8]) -> io::Result<usize> {
            self.assert_sector_sz(buf.len())?;
            let pos_usize: usize = pos.try_into().box_err()?;
            self.tree.write(pos_usize, buf)?;
            let written = self.trailered.write_at(pos, buf)?;
            Ok(written)
        }

        fn flush(&mut self) -> io::Result<()> {
            let root = self.tree.root_hash()?;
            self.trailered.flush_integ(&self.tree, root)
        }
    }

    impl<T: ReadAt + Size> ReadAt for MerkleStream<T> {
        fn read_at(&self, pos: u64, buf: &mut [u8]) -> io::Result<usize> {
            self.assert_sector_sz(buf.len())?;
            self.trailered.read_exact_at(pos, buf)?;
            let pos: usize = pos.try_into().box_err()?;
            self.tree.verify(pos, buf)?;
            Ok(self.sector_sz())
        }
    }

    impl<U, T: AsRef<U>> AsRef<U> for MerkleStream<T> {
        fn as_ref(&self) -> &U {
            self.trailered.as_ref()
        }
    }

    impl<U, T: AsMut<U>> AsMut<U> for MerkleStream<T> {
        fn as_mut(&mut self) -> &mut U {
            self.trailered.as_mut()
        }
    }

    impl<T> Size for MerkleStream<T> {
        fn size(&self) -> io::Result<Option<u64>> {
            self.trailered.size()
        }
    }

    impl<T: FlushMeta> FlushMeta for MerkleStream<T> {
        fn flush_meta(&mut self) -> crate::Result<()> {
            self.trailered.flush_meta()
        }
    }
}

#[cfg(test)]
pub(crate) mod tests {
    use btserde::{from_vec, to_vec};
    use std::io::{Read, Seek, SeekFrom, Write};

    use super::{
        private::{exp2, log2},
        *,
    };
    use crate::{
        test_helpers::{Randomizer, SectoredCursor, SECTOR_SZ_DEFAULT},
        Cursor,
    };

    #[test]
    fn log2_test() {
        assert_eq!(-1, log2(0));
        assert_eq!(0, log2(1));
        assert_eq!(1, log2(2));
        assert_eq!(2, log2(4));
        assert_eq!(2, log2(5));
        assert_eq!(3, log2(8));
        assert_eq!(9, log2(1023));
        assert_eq!(10, log2(1025));
        assert_eq!(63, log2(usize::MAX));
    }

    fn make_tree_with<const SZ: usize>(
        num_sects: usize,
    ) -> (VecMerkleTree<Sha2_256Node>, Vec<[u8; SZ]>) {
        let mut tree = VecMerkleTree::<Sha2_256Node>::empty(SZ);
        let mut sectors = Vec::with_capacity(num_sects);
        for k in 1..(num_sects + 1) {
            let offset = SZ * (k - 1);
            let sector = [k as u8; SZ];
            sectors.push(sector);
            tree.write(offset, &sector).expect("append sector failed");
        }
        (tree, sectors)
    }

    fn merkle_tree_build_verify_test_case<const SZ: usize>(num_sects: usize) {
        let (tree, sectors) = make_tree_with::<SZ>(num_sects);
        for (k, sector) in sectors.into_iter().enumerate() {
            tree.verify(k * SZ, &sector).expect("verify failed");
        }
    }

    #[test]
    fn merkle_tree_append_verify() {
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(0));
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(1));
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(2));
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(3));
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(4));
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(0) + 1);
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(1) + 1);
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(2) + 1);
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(3) + 1);
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(4) + 1);
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(0) - 1);
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(1) - 1);
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(2) - 1);
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(3) - 1);
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(exp2(4) - 1);
        merkle_tree_build_verify_test_case::<SECTOR_SZ_DEFAULT>(1337);
        merkle_tree_build_verify_test_case::<512>(37);
    }

    #[test]
    fn merkle_tree_data_changed_verify_fails() {
        const SZ: usize = SECTOR_SZ_DEFAULT;
        let mut tree = VecMerkleTree::<Sha2_256Node>::empty(SZ);
        let one = [1u8; SZ];
        let mut two = [2u8; SZ];
        let three = [3u8; SZ];
        tree.write(0, &one).expect("append one failed");
        tree.write(SZ, &two).expect("append two failed");
        tree.write(2 * SZ, &three).expect("append three failed");

        two[0] = 7u8;

        tree.verify(0, &one).expect("failed to verify one");
        tree.verify(SZ, &two)
            .expect_err("verify two was expected to fail");
        tree.verify(2 * SZ, &three).expect("failed to verify three");
    }

    #[test]
    fn merkle_tree_root_not_verified_verify_fails() {
        const SZ: usize = SECTOR_SZ_DEFAULT;
        let mut tree = VecMerkleTree::<Sha2_256Node>::empty(SZ);
        let one = [1u8; SZ];
        let two = [2u8; SZ];
        let three = [3u8; SZ];
        tree.write(0, &one).expect("append one failed");
        tree.write(SZ, &two).expect("append two failed");
        tree.write(2 * SZ, &three).expect("append three failed");
        let vec = to_vec(&tree).expect("to_vec failed");
        let tree: VecMerkleTree<Sha2_256Node> = from_vec(&vec).expect("from_vec failed");

        tree.verify(SZ, &two)
            .expect_err("verify succeeded, though it should have failed");
    }

    fn merkle_stream_sequential_test_case(sect_sz: usize, sect_ct: usize) {
        let tree = VariantMerkleTree::empty(MerkleTreeKind::Sha2_256, sect_sz);
        let stream = MerkleStream::with_tree(SectoredCursor::new(Vec::new(), sect_sz), tree)
            .expect("read from end failed");
        let mut stream = Cursor::new(stream);
        for k in 1..(sect_ct + 1) {
            let sector = vec![k as u8; sect_sz];
            stream.write(&sector).expect("write failed");
        }
        stream.seek(SeekFrom::Start(0)).expect("seek failed");
        for k in 1..(sect_ct + 1) {
            let expected = vec![k as u8; sect_sz];
            let mut actual = vec![0u8; sect_sz];
            stream.read(&mut actual).expect("read failed");
            assert_eq!(expected, actual);
        }
    }

    #[test]
    fn merkle_stream_sequential() {
        merkle_stream_sequential_test_case(SECTOR_SZ_DEFAULT, 20);
        merkle_stream_sequential_test_case(SECTOR_SZ_DEFAULT, 200);
        merkle_stream_sequential_test_case(SECTOR_SZ_DEFAULT, 800);
        merkle_stream_sequential_test_case(512, 25);
        merkle_stream_sequential_test_case(8192, 20);
    }

    pub(crate) fn make_merkle_stream_filled_with_zeros(
        sect_sz: usize,
        sect_ct: usize,
    ) -> Cursor<MerkleStream<SectoredCursor<Vec<u8>>>> {
        let tree = VariantMerkleTree::empty(MerkleTreeKind::Sha2_256, sect_sz);
        let stream = MerkleStream::with_tree(SectoredCursor::new(Vec::new(), sect_sz), tree)
            .expect("read from end failed");
        let zeros = vec![0u8; sect_sz];
        let mut stream = Cursor::new(stream);
        for _ in 0..sect_ct {
            stream.write(&zeros).expect("write zeros failed");
        }
        stream.seek(SeekFrom::Start(0)).expect("seek failed");
        stream
    }

    fn merkle_stream_random_test_case(rando: Randomizer, sect_sz: usize, sect_ct: usize) {
        let mut stream = make_merkle_stream_filled_with_zeros(sect_sz, sect_ct);
        let indices: Vec<usize> = rando.take(sect_ct).map(|e| e % sect_ct).collect();
        for index in indices.iter().map(|e| *e) {
            let offset = sect_sz * index;
            stream
                .seek(SeekFrom::Start(offset as u64))
                .expect("seek to write failed");
            let sector = vec![index as u8; sect_sz];
            stream.write(&sector).expect("write failed");
        }
        stream.flush().expect("flush failed");
        for index in indices.iter().map(|e| *e) {
            let offset = sect_sz * index;
            stream
                .seek(SeekFrom::Start(offset as u64))
                .expect("seek to read failed");
            let expected = vec![index as u8; sect_sz];
            let mut actual = vec![0u8; sect_sz];
            stream.read(&mut actual).expect("read failed");
            assert_eq!(expected, actual);
        }
    }

    #[test]
    fn merkle_stream_random() {
        const SEED: [u8; Randomizer::HASH.len()] = [3u8; Randomizer::HASH.len()];
        merkle_stream_random_test_case(Randomizer::new(SEED), SECTOR_SZ_DEFAULT, 2);
        merkle_stream_random_test_case(Randomizer::new(SEED), SECTOR_SZ_DEFAULT, 4);
        merkle_stream_random_test_case(Randomizer::new(SEED), SECTOR_SZ_DEFAULT, 8);
        merkle_stream_random_test_case(Randomizer::new(SEED), SECTOR_SZ_DEFAULT, 20);
        merkle_stream_random_test_case(Randomizer::new(SEED), SECTOR_SZ_DEFAULT, 200);
        merkle_stream_random_test_case(Randomizer::new(SEED), SECTOR_SZ_DEFAULT, 800);
        merkle_stream_random_test_case(Randomizer::new(SEED), 8192, 63);
    }
}