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Abstract

This document is a proposal for a distributed computing environment called Blocktree. The system is
designed around the actor model, and it uses actors to encapsulate resources and provide services. The platform
is responsible for orchestrating these actors on a set of native operating system processes. The persistent
state for the system is stored in a global distributed filesystem implemented using this actor runtime. High
availability is achieved using the Raft consensus protocol to synchronize the state of files between processes.
All data stored in the filesystem is secured with strong integrity and optional confidentiality protections.
Well-known cryptographic constructions are used to provide these protections, the system does not attempt
to innovate in terms of cryptography. A network block device interface allows for fast low-level read and write
access to file sectors, with full support for client-side encryption. The system’s trust model allows for mutual
TLS authentication between all processes, without the need to trust a third-party certificate authority. By
integrating these ideas into a single platform, the system aims to advance the status quo in the security and
reliability of software systems.

1 Introduction

Blocktree is an attempt to extend the Unix philosophy that everything is a file to the entire distributed system
that comprises modern IT infrastructure. The system is organized around a global distributed filesystem which
defines security principals, resources, and their authorization attributes. This filesystem provides a language for
access control that can be used to securely grant access to resources, even those owned by different organizations.
The system provides an actor runtime for orchestrating services. Resources are represented as actors and actors
are executed by runtimes in different operating system processes. Each process has its own credentials which
authenticate it as a unique security principal, and which specify the filesystem path where it’s located. A
process has authorization attributes which determine the set of processes that it may communicate with. TLS
authentication is used to secure connections between processes. Messages addressed to actors in a different process
are forwarded over these connections, while messages delivered to actors in the same process are delivered with
zero-copying.

The single global Blocktree filesystem is partitioned into disjoint domains of authority. Each domain is
controlled by a root principal. As is the case for all principals, a root principal is authenticated by a public-
private signing key pair and is identified by the base64url encoded hash of its public signing key. The domain
of authority for a given absolute path is determined by its first component, which is the identifier of the root
principal that controls the domain. Because there’s no meaning to the directory ‘/’, a directory consisting of only
a single component equal to a root principal’s identifier is referred to as the root directory of the domain. The
root principal delegates its authority to write files to subordinate principals by issuing them certificates which
specify the path that the authority of the subordinate is limited to. File data is signed for authenticity and a
certificate chain is contained in its metadata. This certificate chain must lead back to the root principal and
consist of certificates with correctly scoped authority in order for the file be valid. Given the path of a file and
the file’s contents, this allows the file to be validated by anyone without the need to trust a third-party. Blocktree
paths are called self-certifying for this reason. This construction was independently discovered by the author, but
a similar system was previously used in the Self-certifying File System (SFS) [4].

One of the major challenges in distributed systems is managing persistent state. Blocktree solves this issue
with its distributed filesystem. Files are broken into segments called sectors. The sector size of a file can be
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configured when it’s created, but can’t be changed later. Reads and writes of individual sectors are guaranteed
to be atomic. The sectors which comprise a file and its metadata are replicated by a set of processes running
the sector service. These service providers are responsible for storing the sectors of files that are contained in the
directory containing the runtime in which it’s running. The actors providing the sector service in a given directory
coordinate with one another using the Raft protocol [5] to synchronize the state of the sectors they store. By
partitioning the data in the filesystem based on directory, the system can scale beyond the capabilities of a single
consensus cluster. Associated with every file is a Merkle tree of sector hashes, which allows sectors to be verified
without reading the entire contents of a file. Encryption can be optionally applied to sectors, and when it is, the
key is managed by the system. The cryptographic mechanisms used to implement these protections are described
in section 3.

One of the design goals of Blocktree is to facilitate the creation of composable distributed systems. A major
challenge to building such systems is the difficulty is isolating bugs when they inevitably occur. Research into
session types (a.k.a. Behavioral Types) promises to bring the safety benefits of type checking to actor communi-
cation ([1] chapter 9). Blocktree integrates a session typing system that allows protocol contracts to be defined
that specify the communication protocol of a set of actors. This model allows the state space of the actors partic-
ipating in a computation to be defined, and the state transitions which occur to be specified based on the types of
messages received. These contracts are used to verify protocol adherence statically and dynamically. This system
is implemented using compile time code generation. It frees the developer from dealing with the numerous failure
modes that can occur in a communication protocol.

Blocktree is implemented in the Rust programming language. It is currently tested on Linux, but running it
on other Unix-like operating systems should be straight-forward. FUSE support from the host kernel is required
to mount the filesystem. The system’s source code is licensed under the Affero GNU Public License Version
3. The project’s homepage is https://blocktree.systems. Anyone interested in contributing to development
is welcome to submit a pull request to https://gogs.delease.com/Delease/Blocktree. If you have larger
changes or architectural suggestions, please submit an issue for discussion prior to investing your time in an
implementation.

The remainder of this document is structured as follows:

• Section 2 describes the actor runtime, services, and runtime discovery.

• Section 3 discusses the filesystem, its concurrency semantics and implementation.

• Section 4 details the cryptographic mechanisms used to secure file data.

• Section 5 is a set of examples describing ways that Blocktree can be used to build systems.

• Section 6 provides some concluding remarks.

2 Actor Runtime

Building scalable fault tolerant systems requires us to distribute computation over multiple computers. Rather
than switching to a different programming model when an application scales beyond the capacity of a single
computer, it’s beneficial in terms of programmer time and program simplicity to begin with a model that enables
multi-computer scalability. Fundamentally, all communication over a network involves the exchange of messages.
So if we wish to build scalable fault-tolerant systems, it makes sense to choose a programming model built on
message passing, as this will ensure low impedance with the underlying networking technology.

That is why Blocktree is built on the actor model and why its actor runtime is at the core of its architecture.
The runtime can be used to spawn actors, register services, dispatch messages immediately, and schedule messages
to be delivered in the future. Messages can be dispatched in two ways: with send and call. A message is
dispatched with send when no reply is required, and with call when exactly one is. The Rust Future returned
by call can be awaited to obtain the reply. If a timeout occurs while waiting for the reply, the Future completes
with an error. The name call was chosen to bring to mind a remote procedure call, which is the primary use case
this method was intended for. Awaiting replies to messages serves as a simple way to synchronize a distributed
computation.
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Executing actions at some point in the future or at regular intervals are common tasks in computer systems.
Blocktree facilitates this by allowing messages to be scheduled for future delivery. The schedule may specify a one
time delivery at a specific instant in time, or a repeating delivery with a given period. These scheduling modes
can be combined so that you can specify an anchoring instant and a period whose multiples will be added to this
instant to calculate each delivery time. For example, a message could be scheduled for delivery every morning
at 3 AM. Messages scheduled in a runtime are persisted in the runtime’s file. This ensures scheduled messages
will be delivered even if the runtime is restarted. If a message has been delivered and the schedule is such that
it will never be delivered again, it is removed from the runtime’s file. If a message is scheduled for delivery at
a single instant in time, and that delivery is missed, the message will be delivered as soon as possible. But, if a
message is periodic, any messages which were missed due to a runtime not being active will never be sent. This
is because the runtime only persists the message’s schedule, not every delivery. This mechanism is intended for
periodic tasks or delaying work to a later time, not for building hard realtime systems.

The actor runtime is implemented using the Rust asynchronous runtime tokio [https://tokio.rs]. Actors
are spawned as tasks in the tokio runtime, and multi-producer single consumer channels are used for message
delivery. Because actors are just tasks, they can do anything a task can do, including awaiting other Futures.
Because of this, there is no need for the actor runtime to support short-lived worker tasks, as any such use-case
can be accomplished by awaiting a set of Futures. This allows the runtime to focus on providing support for
services. Using tokio also means that the actor runtime has access to a high performance multi-threaded runtime
with evented IO. This asynchronous programming model ensures that resources are efficiently utilized, and is
ideal for a system focused on orchestrating services which may be used by many clients.

2.1 Services

One of the challenges in building actor systems is supervising and managing actors’ lifecycles. This is handled
in Erlang [1] through the use of supervision trees, but Blocktree takes a different approach, one inspired by
Microsoft’s Orleans framework [2]. Orleans introduced the concept of virtual actors, which are purely logical
entities that exist perpetually. In Orleans, one does not need to spawn actors nor worry about respawning them
should they crash, the framework takes care of spawning an actor when a message is dispatched to it. This
model also gives the framework the flexibility to deactivate actors when they are idle and to load balance actors
across different computers. In Blocktree, a similar system is used when messages are dispatched to services. The
Blocktree runtime takes care of routing these messages to the appropriate actors, spawning them if needed. A
service must be registered in a runtime before messages can be routed to it. The actors which are spawned
based on this registration are called service providers of the service. Services which directly use operating system
resource, such as those that listen on network sockets, are often started immediately after registration so they’re
available to external clients.

Blocktree uses services to represent a logical collection of actors which implement some kind of computational
service for other actors in the system or external clients. A service is identified by a Blocktree path. Only one
service implementation can be registered in a particular runtime, though this implementation may be used to
spawn many actors as providers for the service, each associated with a different ID. The runtime spawns a new
actor when it finds no service provider associated with the ID in message it’s delivering. Some services may only
have one service provider in a given runtime, as is the case for the sector and filesystem services. The scope and
rootward field in a service name specify the set of runtimes to which a message may be delivered. They allow the
sender to express their intended recipient, while still affording enough flexibility to the runtime to route messages
as needed. If rootward is false, the message is delivered to a service provider in a runtime that is directly
contained in scope. If rootward is true, the parent directories of scope are searched, working towards the root of
the filesystem tree, and the message is delivered to the first provider of service which is found. When there are
multiple service providers to which a given message could be delivered, the one to which it is actually delivered
is unspecified to allow the runtime to balance load. Delivery will occur to at most one recipient, even in the case
that there are multiple potential recipients. In order to contact other runtimes and deliver messages to them
their network endpoints (IP addresses and UDP ports) need to be known. This is achieved by maintaining a file
with a runtime’s endpoint in the same directory as the runtime. The runtime is granted write permissions on the
file, and it is updated by bttp when it begins listening on a new endpoint. The port a bttp server uses to listen
for unicast connections is uniformly randomly selected from the set of ports in the dynamic range (49152-65535)
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which are unused on the server’s host. Use of a random port allows many different bttp servers to share a single
IP address and makes Blocktree more resistent to censorship. The services which are allowed to be registered
in a given runtime are specified in the runtime’s file. The runtime reads this list and uses it to deny service
registrations for unauthorized services. The list is also read by other runtime’s when they’re searching for service
providers.

Messages can be addressed to services or specific actors. When addressed to a specific actor, the message
contains an actor name, which is a pair consisting of the path of the runtime hosting the actor and the Uuid

identifying the specific actor in that runtime. When addressed to a service, a message is dispatched using a service
name, which contains the following fields:

1. service: The path identifying the receiving service.

2. scope: A filesystem path used to specify the intended recipient.

3. rootward: A boolean describing whether message delivery is attempted towards or away from the root of
the filesystem tree. A value of false indicates that the message is intended for a runtime directly contained
in the scope. A value of true indicates that the message is intended for a runtime contained in a parent
directory of the scope and should be delivered to a runtime which has the requested service registered and
is closest to the scope.

4. id: An identifier for a specific service provider.

The ID can be a Uuid or a String. It is treated as an opaque identifier by the runtime, but a service is free to
associate additional meaning to it. Every message has a header containing the name of the sender and receiver.
The receiver can be an actor or service name, but the receiver is always an actor name. For example, to open a
file, a message is dispatched with call using the service name of the filesystem service. The reply contains the
name of the file actor spawned by the filesystem service which owns the opened file. Messages are then dispatched
to the file actor using its actor name to read and write to the file.

The filesystem is itself implemented as a service. A filesystem service provider can be passed messages to
delete files, list directory contents, open files, or perform other standard filesystem operations. When a file is
opened, a new actor is spawned which owns the newly created file handle and its name is returned to the caller
in a reply. Subsequent read and write messages are sent to this actor. The filesystem service does not persist
any data itself, its job is to function as an integration layer, conglomerating sector data from many different
sources into a single unified interface. The sector service is what is ultimately responsible for storing data and
maintaining the persistent state of the system. It stores sector data in the local filesystem of each computer on
which it’s registered. The details of how this is accomplished are described in the next section.

2.2 Transporting Messages

Messages can be forwarded between actor runtimes using a secure transport called bttp. This transport is imple-
mented using the QUIC protocol [3], which integrates TLS for security. A bttp client may connect anonymously
or using credentials. If an anonymous connection is attempted, the client has no authorization attributes asso-
ciated with it. Only runtimes which grant others the execute permission allow connections from such clients.
If these permissions are not granted in the runtime’s file, anonymous connections are rejected. When a client
connects with credentials, mutual TLS authentication is performed as part of the connection handshake, which
cryptographically verifies the credentials of each runtime. These credentials contain the filesystem paths where
each runtime is located. This information is used to securely route messages between runtimes. The bttp server
is always authenticated during the handshake, even when the client is connecting anonymously. Because QUIC
supports the concurrent use of many different streams, it serves as an ideal transport for a message oriented
system. bttp uses different streams for independent messages, ensuring that head of line blocking does not occur.
Note that although data from separate streams can arrive in any order, the protocol does provide reliable in-order
delivery of data in any given stream. The same stream is used for sending the reply to a message dispatched with
call. Once a connection is established, messages may flow both directions (provided both runtimes have execute
permissions for the other), regardless of which runtime is acting as the client or the server.
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When a message is sent between actors in the same runtime it is delivered into the queue of the recipient
without any copying, while ensuring immutability (i.e. move semantics). This is possible thanks to the Rust
ownership system, because the message sender gives ownership to the runtime when it dispatches the message,
and the runtime gives ownership to the recipient when it delivers it.

2.3 Communication Security Model

A runtime is represented in the filesystem as a file. Among other things, this file contains the authorization
attributes associated with the runtime’s security principal. The certificate used by the runtime to authenticate
is also contained in this file, so other runtimes are able to locate it and the public key contained within it. The
metadata of the file contains authorization attributes just like any other file (e.g. UID, GID, and mode bits).
In order for a principal to be able to send a message to an actor in the runtime, it must have execute permis-
sions for this file. Thus communication between runtimes can be controlled using simple filesystem permissions.
Permissions checking is done during the bttp handshake. Note that it is possible for messages to be sent in
one direction in a bttp connection but not in the other. In this situation replies are permitted but unsolicited
messages are not. An important trade-off which was made when designing this model was that messages which
are sent between actors in the same runtime are not subject to any authorization checks. This was done for two
reasons: performance and security. By eliminating authorization checks messages can be more efficiently delivered
between actors in the same process, which helps to reduce the performance penalty of the actor runtime over
directly using a tokio::Task. Security is enhanced by this decision because it forces the user to separate actors
with different security requirements into different operating system processes, which ensures all of the process
isolation machinery in the operating system will be used to isolate them.

2.4 Actor Ownership

As in other actor systems, it is convenient to represent resources in Blocktree using actors. This allows the same
security model used to control communication between actors to be used for controlling access to resources, and
for resources to be shared by many actors. For instance, a Point-to-Point Protocol connection could be owned by
an actor. This actor could forward traffic delivered to it in messages over this connection. The set of actors which
are able to access the connection is controlled by setting the filesystem permissions on the file for the runtime
executing the actor owning the connection.

The concept of ownership in programming languages is very useful for ensuring that resources are properly
released when the object using them dies. Because actors are used for encapsulating resources in Blocktree, a
similar system of ownership is employed. An actor is initially owned by the actor that spawned it. It can only have
a single owner, but the owner can grant ownership to another actor. An actor is not allowed to own itself, though
it may be owned by the runtime. When the owner of an actor returns, the actor is sent a message instructing it to
return. If it does not return after a timeout, it is interrupted. This is the opposite of how supervision trees work
in Erlang. Instead of the parent receiving a message when the child returns, the child receives a message when
the parent returns. Service providers spawned by the runtime are owned by it. They continue running until the
runtime chooses to reclaim their resources, which can happen because they are idle or the runtime is overloaded.
Note that ownership is not limited to a single runtime, so distributed resources can be managed by owning actors
in many different runtimes. In this case the connection to the remote runtime serves as a proxy for the remote
owner, so the owned actors will be ordered to return if this connection dies or the remote owner dies.

While the actor runtime can be a convenient way of implementing new systems, a backwards compatibility
mechanism is needed to allow existing systems to operate in the context of Blocktree. Containers have become
the standard unit of deployment for modern applications, which makes them both useful and straight-forward
to support in Blocktree. To execute a container in the actor runtime, it must be owned by a supervising actor.
This actor is responsible for starting the container and managing the container’s kernel resources. Logically, it
owns all such resources, including all spawned operating system processes. When the actor halts, all of these
resources are destroyed. All network communication to the container is controlled by the supervising actor. The
supervisor can be configured to bind container ports to host ports, as is commonly done today, but it can also
be used to encapsulate traffic to and from the container in Blocktree messages. These messages are routed to
other actors based on the configuration of the supervisor. This essentially creates a VPN for containers, ensuring
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that regardless of how insecure their communication is, they will be safe to communicate over any network. This
network encapsulation system could be used in other actors as well, allowing a lightweight and secure VPN system
to built.

2.5 Runtime Discovery Over the Network

While it’s possible to resolve runtime paths to network endpoints when the filesystem is available, another mech-
anism is needed to allow the filesystem service providers to be discovered. This is accomplished by allowing
runtimes to query one another to learn of other runtimes. Because queries are intended to facilitate message
delivery, the query fields and their semantics mirror those used for addressing messages:

1. service The path of the service whose providers are sought. Only runtimes with this service registered will
be returned.

2. scope The filesystem path relative to which the query will be processed.

3. rootward Indicates if the query should search for runtimes from scope toward the root.

As long as at least one other runtime is known, a query can be issued to learn of more runtimes. A runtime which
receives a query may not be able to answer it directly. If it cannot, it returns the endpoint of the next runtime
to which the query should be sent.

In order to bootstrap the discovery processes, another mechanism is needed to find the first peer to query.
There were several possibilities explored for doing this. One way is to use a blockchain to store this data. This
idea may be worth revisiting in the future, but the author wanted to avoid the complexity of implementing a new
proof of work blockchain. Instead, two independent mechanisms are used, one that can discover runtimes over
the internet as long as their path is known, and another that can discover runtimes on the local network even
when the discoverer doesn’t know their paths.

When the path to a runtime is known, DNS is used to resolve SRV records using a fully qualified domain
name (FQDN) derived from the path’s root principal identifier. The SRV records are resolved using the name
bttp. udp.<FQDN>, where <FQDN> is the FQDN derived from the root principal’s identifier. One SRV record may
be created for each of the filesystem service providers in the root directory. Each record contains the UDP port
and hostname where a runtime is listening. Every runtime is configured with a search domain that is used as a
suffix in the FQDN. The leading labels in the FQDN are computed by base32 encoding the binary representation
of the root principal’s identifier. If the encoded string is longer than 63 bytes (the limit for each label in a
hostname), it is separated into the fewest number of labels possible, working from left to right along the string.
A dot followed by the search domain is concatenated onto the end of this string to form the FQDN. This method
has the advantages of being simple to implement and allowing runtimes to discover each other over the internet.
Implementing this system would be facilitated by hosting DNS servers in actors in the same runtimes as the
root filesystem service providers. Then, records could be dynamically created which point to these runtimes.
These runtimes would also need to be configured with static IP addresses, and the NS records for the search
domain would need to point to them. It is also possible to build such a system without hosting DNS inside of
Blocktree, by using a dynamic DNS service. The downside of using DNS is that it couples Blocktree with a
centrally administered, albeit distributed, system.

Because this mechanism requires knowledge of the root principal of a domain to perform discovery, it will
not work if a runtime doesn’t know its own root principal because it’s starting up for the first time and has no
credentials. This runtime needs a way to discover other runtimes so it can connect to the filesystem and sector
services. This issue is solved by using link-local multicast addressing to discover the runtimes on the same network
as the discoverer. When a bttp server starts listening for unicast traffic, it also listens for UDP datagrams on port
50142 at addresses 224.0.0.142 and FE02::142, if the IPv4 or IPv6 networking stacks are available, respectively. If
the host is attached to a dual-stack network, the server listens on both addresses. When a runtime is attempting
to discover other runtimes, it sends out datagrams to these endpoints. Each bttp server replies with its unicast
endpoint and filesystem path (as specified in its credentials). If the server is available at both IPv4 and IPv6
unicast addresses, it’s at the server’s discretion which address to respond with. It may even respond with an IPv4
endpoint to an IPv4 datagram, and IPv6 endpoint to an IPv6 datagram. Once a client has discovered the bttp
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servers on its network, it can route messages to them, such as the provisioning requests which are used to obtain
new credentials. Provisioning is described in the Cryptography section. Note that port 50142 is in the dynamic
range, so it doesn’t need to registered with the Internet Assigned Names and Numbers Authority (IANA). Both
addresses 224.0.0.142 and FE02::142 are currently unassigned. but they will need to be registered with IANA if
Blocktree is widely adopted.

To allow runtimes which are not permitted to execute the root directory to query for other runtimes, autho-
rization logic which is specific to queries is needed. If a process is connected with credentials and the path in
the credentials contains the scope of the query, the query is permitted. If a process is connected anonymously,
its query will only be answered if the query scope and all of its parent directories, grant others the execute
permission. Queries from authenticated clients can be authorized using only the information in the handshake
and query, but anonymous queries require knowledge of filesystem permissions, some of which may not be known
to the answering runtime. When authorizing an anonymous query, an answering runtime should check that that
the execute permission is granted on all directories that it’s responsible for storing. If all these checks pass, it
should forward the querier to the next runtime as usual.

2.6 Protocol Contracts

To facilitate the creation of composable systems, a protocol contract checking system based on session types has
been designed. This system models a communication protocol as a directed graph representing state transitions
based on the types of received messages. The protocol author defines the states that the actors participating in
the protocol can be in using Rust traits. These traits define handler methods for each message type the actor is
expected to handle in that state. A top-level trait which represents the entire protocol is defined that contains the
types of the initial state of every party in the protocol. A macro is used to generate the message handling loop for
each of the parties to the protocol, as well as enums to represent all possible states that the parties can be in and
the messages that they exchange. The generated code is responsible for ensuring that errors are handled when a
message of an unexpected type is received, eliminating the need for ad-hoc error handling code to be written by
application developers.

Let’s explore how this system can be used to build a simple pub-sub communications protocol. In this protocol,
there will be a server which handles Pub and Sub messages, and there will be a client which sends Sub when it
starts up and processes the resulting Pub messages as they arrive. The state-transition graph for the protocol is
shown in figure 1. The solid edges indicate state transitions and are labeled with the message type which triggered
the transition. The dashed edges indicate message delivery and are labeled with the type of the message being
delivered. Although Runtime is not the state of any actor in the system, it is included in the graph because it is
the logical sender of the Activate and Pub messages. Activate is delivered by the runtime to pass a reference
to the runtime and provide the actor’s Uuid. Pub messages are dispatched by actors outside the graph and are
routed to actors in the Listening state by the runtime. Note that the runtime itself doesn’t have any notion
of the state of an actor, it just delivers messaging using the rules described previously. Only an actor can tell
whether a message is expected or not given its current state. Each of the actor states are modeled by the following
Rust traits:

pub struct ClientInit {

type AfterActivate: Subed;

type Fut: Future<Output = Result<Self::AfterActivate>>;

fn handle_activate(self, msg: Activate) -> Self::Fut;

}

pub struct Subed {

type AfterPub: Subed;

type Fut: Future<Output = Result<Self::AfterPub>>;

fn handle_pub(self, msg: Envelope<Pub>) -> Self::Fut;

}

pub struct ServerInit {
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Figure 1: The state-transition graph for a simple pub-sub protocol.

type AfterActivate: Listening;

type Fut: Future<Output = Result<Self::AfterActivate>>;

fn handle_activate(self, msg: Activate) -> Self::Fut;

}

pub struct Listening {

type AfterSub: Listening;

type SubFut: Future<Output = Result<Self::AfterSub>>;

fn handle_sub(self, msg: Envelope<Sub>) -> Self::SubFut;

type AfterPub: Listening;

type PubFut: Future<Output = Result<Self::AfterPub>>;

fn handle_pub(self, msg: Envelope<Pub>) -> Self::PubFut;

}

The definition of Activate is as follows:

pub struct Activate {

rt: &’static Runtime,

act_id: Uuid,

}

A static reference can be given to a runtime because a runtime is required to live for the entire lifetime of a
process. This allows simple references to be passed around, avoiding the complexity of lifetimes and the overhead
of reference counting. The Envelope type is a wrapper around a message which contains information about who
sent it and a method that can be used to send a reply. In general a new actor state, represented by a new type,
can be returned by a messaging handling method. The protocol itself is represented by the trait:

pub trait PubSubProtocol {

type Server: ServerInit;

type Client: ClientInit;
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}

By modeling this protocol independently of any implementation of it, we allow for many different interopera-
ble implementations to be created. We can also isolate bugs in these implementations because unexpected or
malformed messages are checked for by the generated code.

2.7 Future Work

Currently, the actor runtime only supports actors implemented in Rust. A WebAssembly (Wasm) plugin system
is planned which allows actors to be implemented in any language which can be compiled to Wasm. This work
is blocked pending the standardization of the WebAssembly Component Model, which promises to provide an
interface definition language which will allow type safe actors to be defined in many different languages. Once
Wasm support is added, it will make sense to use the filesystem to distribute compiled actor modules, as the
strong integrity protection it provides make it an ideal way to securely distribute software.

Any computer system of even moderate complexity needs an interface for viewing and controlling the state
of the system. The modern cross-platform way to accomplish this is by creating a web GUI. Blocktree will
include a service called btconsole which provides such an interface. It will be used to view and modify the
filesystem, modify runtime attributes, and even register new services. The aim is to provide an interface which
makes complicated network management tasks simple, and make networks more secure by providing a single pane
of glass which shows their configuration.

3 Filesystem

The responsibility for serving data in Blocktree is shared between the filesystem and sector services. Most actors
will access the filesystem through the filesystem service, which provides a high-level interface that takes care of
the cryptographic operations necessary to read and write files. The filesystem service relies on the sector service
for actually persisting data. The individual sectors which make up a file are read from and written to the sector
service, which stores them in the local filesystem of the computer on which it’s running. A sector is the atomic
unit of data storage and the sector service only supports reading and writing entire sectors at once. File actors
spawned by the filesystem service buffer reads and writes until there is enough data to fill a sector. Because
cryptographic operations are only performed on full sectors, the cost of providing these protections is amortized
over the size of the sector. Thus there is tradeoff between latency and throughput when selecting the sector size:
a smaller size means less latency but a larger one enables more throughput.

3.1 The Sector Service

A file has a single metadata sector, a Merkle sector, and zero or more data sectors. The sector size of a file can
be specified when it’s created, but cannot be changed later. Every data sector contains the ciphertext of the
number of bytes equal to the sector size, but the metadata and Merkle sectors contain a variable amount of data.
The metadata sector contains all of the filesystem metadata associated with the file. In addition to the usual
metadata present in any Unix filesystem, cryptographic information necessary to verify and decrypt the contents
of the file is also stored. The Merkle sector of a file contains a Merkle tree over the data sectors of a file. The
hash function used by this tree can be configured at file creation, but cannot be changed later.

When sector service providers are contained in the same directory they connect to each other to form a
consensus cluster. This cluster is identified by a u64 called the cluster’s generation. Every file is identified by a
pair of u64, its generation and its inode. The sectors within a file are identified by an enum which specifies which
type they are, and in the case of data sectors, their 0-based index.

pub enum SectorKind {

Meta,

Merkle,

Data(u64),

}
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The byte offset in the plaintext of the file at which each data sector begins can be calculated by multiplying the
sector’s index by the sector size of the file. The SectorId type is used to identify a sector.

pub enum SectorId {

generation: u64,

inode: u64,

sector: SectorKind,

}

The sector service persists sectors in a directory in its local filesystem, with each sector stored in a different
file. The scheme used to name these files involves security considerations, and is described in the next section.
When a sector is updated, a new local file is created with a different name containing the new contents. Rather
than deleting the old sector file, it is overwritten by the creation of a hardlink to the new file, and the name that
was used to create the new file is unlinked. This method ensures that the sector file is updated in one atomic
operation. The sector service also uses the local filesystem to persist the replicated log it uses for Raft. This file
serves as a journal of sector operations.

Communication with the sector service is done by passing it messages of type SectorMsg.

pub struct SectorMsg {

id: SectorId,

op: SectorOperation,

}

pub enum SectorOperation {

Read,

Write(WriteOperation),

}

pub enum WriteOperation {

Meta(Box<FileMeta>),

Data {

meta: Box<FileMeta>,

contents: Vec<u8>,

}

}

Here FileMeta is the type used to store metadata for files. Note that updated metadata is required to be sent
when a sector’s contents are modified, because it contains updated integrity information.

A generation of sector service providers uses the Raft protocol to synchronize the state of the sectors it stores.
The message passing interface of the runtime enables this implementation and the sector service’s requirements
were important considerations when designing this interface. The system currently replicates all data to each
of the service providers in the cluster. Additional replication methods are planned as future enhancements (e.g.
erasure encoding and distribution via consistent hashing), allowing for different tradeoffs between data durability
and storage utilization.

The creation of a new generation of the sector service is accomplished with several steps. First, a new
directory is created to contain the generation. Next, one or more runtimes are provisioned in this directory, using
a procedure which is described in the next section. Provisioning produces files for each of the runtimes stored in
the new directory. The sector service provider in each of the runtimes uses the filesystem service (which connects
to the parent generation) to find the other runtimes hosting the sector service in the directory and messages
them to establish a fully-connected cluster. Finally, the service provider which is elected leader contacts the
generation in the root directory and requests a new generation number. Once this number is known, it is stored
in the superblock for the generation, which is the file identified by the new generation number and inode 2. The
superblock is not contained in any directory and cannot be accessed outside the sector service. The superblock
also keeps track of the next inode to assign to a new file.
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To prevent malicious actors from writing invalid data, the sector service must cryptographically verify all
write messages. The process it uses to do this involves several steps:

1. The certificate chain in the metadata that was sent in the write message is validated. It is considered valid
if it ends with a certificate signed by the root principal and the paths in the certificates are correctly nested,
indicating valid delegation of write authority at every step.

2. Using the last public key in the certificate chain, the signature in the metadata is validated. This signature
covers all of the fields in the metadata.

3. The new sector contents in the write message are hashed using the digest function configured for the file
and the resulting hash is used to update the file’s Merkle tree in its Merkle sector.

4. The root of the Merkle tree is compared with the integrity value in the file’s metadata. The write message
is considered valid if and only if there is a match.

This same logic is used by file actors to verify the data they read from the sector service, except they don’t modify
the Merkle tree during verification, they just compare computed hashes to those contained in the nodes on the
path from the sector’s leaf node to the root. Only once a write message is validated is it shared with the sector
service provider’s peers in its generation. Although the data in a file is encrypted, it is still beneficial for security
to prevent unauthorized principals from gaining access to its ciphertext. To prevent this, a sector service provider
checks a file’s metadata to verify that the requesting principal actually has a readcap (to be defined in the next
section) for the file. This ensures that only principals that are authorized to read a file can access its sectors.

3.2 The Filesystem Service

The sector service is relied upon by the filesystem service to read and write sectors. Filesystem service providers
communicate with the sector service to open files and perform filesystem operations. These providers spawn
file actors that are responsible for verifying and decrypting the information contained in sectors. They use the
credentials of the runtime they’re hosted in to decrypt sector data using information contained in file metadata.
File actors are also responsible for encrypting and integrity protecting data written to files. In order for these
actors to produce a signature over the root of the file’s Merkle tree, it maintains a copy of the tree in memory. This
copy is read from the sector service when the file is opened. While this does mean duplicating data between the
sector and filesystem services, this design was chosen to reduce the network traffic between the two services, as the
entire Merkle tree does not need to be transmitted on every write. Encapsulating all cryptographic operations in
the filesystem service and file actors allows the computer storing data to be different from the computer encrypting
it. This approach allows client-side encryption to be done on more capable computers and low powered devices
to delegate encryption to a storage server.

A major advantage of using file actors to access file data is that they can be accessed over the network from
a different runtime as easily as they can be from the same runtime. One complication arising from this approach
is that file actors must not outlive the actor which caused them to be spawned. This is handled in the filesystem
service by making the actor who opened the file the owner of the file actor. When a file actor receives notification
that its owner returned, it flushes any buffered data and returns.

Some of the information stored in metadata needs to be kept in plaintext to allow files to be verified and
decrypted, but most of it is encrypted using the same key as the file’s contents. The file’s authorization attributes,
its size, and its access times are all encrypted. The table storing the file’s extended attributes (EAs) is also
encrypted. Cache control information is included in this area as well. It specifies the number of seconds that a
file may be cached as a u32. The filesystem service uses this information to evict sectors from its cache when
they’ve been cached for longer than this threshold.

The filesystem service uses an Authorizer type to make authorization decisions. It passes this type the
authorization attributes of the principal accessing the file, the attributes of the file, and the type of access (read,
write, or execute). The Authorizer returns a boolean indicating if access is permitted or denied. These access
control checks are performed for every message processed by the filesystem service, including opening a file. A file
actor only responds to messages sent from its owner, which ensures that it can avoid the overhead of performing
access control checks as these were carried out by the filesystem service when it was created. The file actor is
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configured when it is spawned to allow read only, write only, or read write access to a file, depending on what
type of access was requested by the actor opening the file.

3.3 Filesystem Event Publishing

Often when building distributed systems it’s convenient to publish information about events to any interested
party. To facilitate this pattern, the sector service allows actors to subscribe for notifications when a file is written
to. The sector service maintains a list of actors which are currently subscribed, and when it commits a write to
its local storage, it sends each of them a notification message identifying the sector written (but not the written
data). By using different files to represent different events, a simple notification system can be built. Because
the contents of a directory may be distributed over many different generations, this system does not support the
recursive monitoring of directories. Although this system lacks the power of inotify in the Linux kernel, it does
provides some of its benefits without incurring much of a performance overhead or implementation complexity.
For example, this system can be used to implement streaming replication. This is done by subscribing to writes
on all the files that are to be replicated, then reading new sectors as soon as notifications are received. These
sectors can then be written into replica files in a different directory. This ensures that the contents of the replicas
will be updated in near real-time.

3.4 External Access to the Filesystem

Being able to access the filesystem from actors allows a programmer to implement new applications using Block-
tree, but there is an entire world of existing applications which only know how to access the local filesystem. To
allow these applications to access Blocktree, a FUSE daemon called btfuse was written which allows a Blocktree
directory to be mounted to a directory in the local filesystem. This daemon can directly access the sector files in
a local directory, or it can connect over the network to filesystem or sector service provider. This FUSE daemon
could be included in a system’s initrd to allow it to mount its root filesystem from Blocktree, opening up many
interesting possibilities for hosting machine images in Blocktree. A planned future enhancement is to develop a
Blocktree filesystem driver which actually runs in kernel space. This would reduce the overhead associated with
context switching back and forth from user space to kernel space, increasing the performance of the system.

3.5 Future Work

Because of the strong integrity protection afforded to sectors, it is possible for peer-to-peer distribution of sector
data to be done securely. Implementing this mechanism is planned as a future enhancement to the system. The
idea is to base the design on bit torrent, where the generation responsible for a file acts as a tracker for that
file, and the file actors accessing it communicate with one another directly using the information provided by the
sector service. This could allow the system to scale elastically to a much larger number of concurrent reads by
reducing the load on the sector service.

4 Cryptography

This section describes the cryptographic mechanisms used to integrity and confidentiality protect files as well as
procedures for obtaining credentials. These mechanisms are based on well-established cryptographic constructions.

4.1 Integrity Protection

A file is integrity protected by a digital signature over its metadata. The metadata contains an integrity field
which contains the root node of the Merkle tree over the file’s contents. This allows any sector in the file to
be verified with a number of hash function invocations that is logarithmic in the size of the file. It also allows
the sectors of a file to be verified in any order, enabling random access. The hash function used in the Merkle
tree can be configured when the file is created. Currently, SHA-256 is the default, and SHA-512 is supported.
A file’s metadata also contains a certificate chain, and this chain is used to authenticate the signature over the
metadata. In Blocktree, the certificate chain is referred to as a writecap because it grants the capability to write
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to files. This term comes from Tahoe: The Least-Authority Filesystem [7]. The certificates in a valid writecap
are ordered by their paths, the initial certificate contains the longest path, the path in each subsequent certificate
must be a prefix of the one preceding it, and the final certificate must be signed by the root principal. These
rules ensure that there is a valid delegation of write authority at every link in the chain, and that the authority
is ultimately derived from the root principal specified by the absolute path of the file. By including all the
information necessary to verify the integrity of a file in its metadata, it is possible for a requestor who only knows
the path of a file to verify that the contents of the file are authentic.

4.2 Confidentiality Protection

Confidentiality protection of files is optional but when it is enabled, a file’s sectors are individually encrypted
using a symmetric cipher. The key to this cipher is randomly generated when a file is created. A different IV
is generated for each sector by hashing the index of the sector with a randomly generated IV for the entire file.
A file’s key and IV are encrypted using the public keys of the principals to whom read access is allowed. The
resulting ciphertext is referred to as a readcap, as it grants the capability to read the file. This term is also from
Tahoe [7]. These readcaps are stored in a table in the file’s metadata. Each entry in the table is identified by a
byte string that is derived from the public key of the principal who owns the entry’s readcap. The byte string
is computed by calculating an HMAC of the the principal’s public key. The HMAC is keyed with a randomly
generated salt that is stored in the file’s metadata. An identifier for the hash function that was used in the HMAC
is included in the byte string so that it can be recomputed later. When the filesystem service accesses the file, it
recomputes the HMAC using the salt, its public key, and the hash function specified in each entry of the table. It
can then identify the entry which contains its readcap, or that such an entry does not exist. This mechanism was
designed to prevent offline correlation attacks on the readcap table, as it’s stored in plaintext in local filesystems.
The file key and IV are also encrypted using the keys of the file’s parents. Note that there may be multiple parents
of a file because it may be hard linked to several directories. Each of the resulting ciphertexts is stored in another
table in the file’s metadata. The entries in this table are identified by an HMAC of the parent’s generation and
inode numbers, where the HMAC is keyed using the file’s salt. By encrypting a file’s key and IV using the key
and IV of its parents, it is possible to traverse a directly tree using only a single public key decryption. The file
where this traversal begins must contain a readcap owned by the accessing principal, but all subsequent accesses
can be performed by decrypting the key and IV of a child using the key and IV of a parent. Not only does this
allow traversals to use more efficient symmetric key cryptography, but it also means that it suffices to grant a
readcap on a single directory in order to grant access to the entire tree rooted at that directory.

Because it is not possible to change the key used by a file after it’s created, a file must be copied in order
to rotate the key used to encrypt it. Similarly, revoking a readcap is accomplished by creating a copy of the file
and adding all the readcaps from the original’s metadata except for the one being revoked. While it’s certainly
possible to remove a readcap from the metadata table, this is not supported because the readcap holder may have
used custom software to save the file’s key and IV while it had access to them, so data written to the same file
after revocation could potentially be decrypted by it. By forcing the user to create a new file, they are forced to
re-encrypt the data using a fresh key and IV, which cannot be known to the principal whose readcap was revoked.

4.3 Obfuscation of Sector Files in the Local Filesystem

From an attacker’s perspective, not every file in a domain is equally interesting. They may be particularly
interested in reading the root directory, or they may have identified the inode of a file containing kompromat.
To make offline identification of which files sectors in the local filesystem belong to, an obfuscation mechanism
is used. This works by generating a random salt for each generation of the sector service, and storing it in the
generation’s superblock. It is hashed along with the inode and the sector ID to produce the name to use for the
sector file in the local filesystem. These files are organized into different subdirectories according to the value of
the first two digits in the hex encoding of the resulting hash, the same way git organizes object files. This simple
method makes it more difficult for an attacker to identify the files each sector belongs to while still allowing the
sector service efficient access.
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4.4 Credential Storage and Provisioning

Processes need a way to securely store their credentials. They accomplish this by using a credential store, which is
a type that implements the trait CredStore. A credential store provides methods for using a process’s credentials
to encrypt, decrypt, sign, and verify data, but it does not allow them to be exported. A credential store also
provides a method for generating new root credentials. Because root credentials represent the root of trust for an
entire domain, it must be possible to securely back them up from one credential store to another. Root credentials
can also be used to perform cryptographic operations without exporting them. A password is set when the root
credentials are generated, and this same password must be provided to use, export, and import them. When
root credentials are exported from a credential store they are confidentiality protected using multiple layers of
encryption. The outer layer is encryption by a symmetric key cipher whose key is derived from the password.
The public storage key of the receiving credential store must also be provided when root credentials are exported.
This public key is used to perform encrypt a randomly generated key and IV which is used to perform the inner
encryption of the root credentials with a symmetric cipher, ensuring that only the intended credential store is
able to import them. Currently there are two CredStore implementors in Blocktree, one which is used for testing
and one which is more secure. The first is called FileCredStore, and it uses a file in the local filesystem to store
credentials. A symmetric cipher is used to protect the root credentials, if they are stored, but it relies on the
security of the underlying filesystem to protect the process credentials. For this reason it is not recommended
for production use. The other credential store is called TpmCredStore, and it uses a Trusted Platform Module
(TPM) 2.0 [6] to store credentials. The TPM is used to generate the process’s credentials in such a way that they
can never be exported from the TPM (this is a feature of TPM 2.0). A randomly generated cookie is needed to
use these credentials. The cookie is stored in a file in the local filesystem which has its permissions set to prevent
others from accessing it. Thus this type also relies on the security of the local filesystem, but an attacker would
need to steal the TPM and this cookie in order to steal a process’s credentials.

The term provisioning is used in Blocktree to refer to the process of acquiring credentials. A command line tool
call btprovision is provided for provisioning credential stores. This tool can be used to generate new process or
root credentials, create a certificate request using them, issue a new writecap, and finally to import the writecap.
When setting up a new domain, btprovision can create a new sector storage directory in the local filesystem and
write the new process’s files to it. It’s also capable of connecting to the filesystem service if it’s already running.

While manual provisioning is necessary to bootstrap a domain, an automatic method is needed to make this
process more ergonomic. When a runtime starts, it checks its configured credential store to find the writecap
to use to authenticating to other runtimes. If one is not stored, the runtime can choose to request a writecap
from the filesystem service. This is done by dispatching a message with call to the filesystem service without
specifying a scope. Because the message doesn’t contain a path, theres no root directory to begin discovery at.
So, the runtime resorts to using link-local discovery to find other runtimes. If one is discovered, the runtime
connects to it anonymously and sends it a writecap request. This request includes a copy of the runtime’s public
key and, optional, a path where the runtime would like to be located. This path is purely advisory, the filesystem
service is free to place the runtime in any directory it sees fit. The filesystem service creates a new file for the
new runtime containing its public key and marks it as pending. The reply to the runtime contains the path of
the file created for it. The operators of the domain can then use btconsole or btprovision to view the request
and approve it at their discretion. The approving operator uses their credentials and the public key in the new
process’s file to issue a new writecap and stores it in the file. Authorization attributes (e.g. UID and GID) are
also assigned and written into the file. Note that a process’s file is normally not writeable by the process itself,
so as to prevent it from setting its own authorization attributes. Once these data have been written, the runtime
can read its file to retrieve its new writecap, which it stores in its credential store for later use. The runtime can
avoid polling its file for changes if it subscribes to write notifications. To communicate using its new authorization
attributes, the runtime must break existing connections and reconnect using its new writecap. Note that this
procedure requires the new runtime to be on the same LAN as a filesystem service provider.

The procedure for creating a new domain is straight-forward, and all the steps can be performed using
btprovision.

1. Generate the root credentials for the new domain.

2. Generate the credentials for the first runtime.
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3. Create a writecap request using the runtime credentials.

4. Approve the request using the root credentials.

5. Import the new writecap into the credential store of the first runtime.

The first runtime is configured to host the sector and filesystem services, so that subsequent runtimes will have
access to the filesystem. After that, additional runtimes on the same LAN can be provisioned using the automatic
process.

4.5 Access Control Examples

Up till now the focus has been on authentication and authorization of processes, but it bears discussing how
user based access control can be accomplished with Blocktree. Because credentials are locked to the device on
which they’re created, a user will be associated with at least as many principals as they have devices. But, all of
these principals can be configured to have the same authorization attributes (UID, GID, SELinux context, etc.),
giving them the same permissions. It makes sense to provision all of the runtimes associated with a user in one
place and the natural place is the user’s home directory. Although every one of the user’s processes needs to be
provisioned, this is not a huge limitation because a single runtime can host many different actors, implementing
many different applications. Managing the users in a domain is facilitated by putting their home directories in
a single user directory for the domain. Runtimes hosting the sector service on storage servers could then be
provisioned in this directory to provide the sector and filesystem services for the users’ home directories. It would
be at the administrator’s discretion whether to enable client-side encryption. If they wanted to enable it, the
principal of at least one of a user’s runtimes would need to be issued a readcap for the user’s home directory.
This runtime could then directly access the sector service in the domain’s user directory. By moving encryption
onto the user’s computer, load can be shed from the storage servers. Note that this setup does require all of the
user’s runtimes to be able to communicate with the runtime whose principal was issued the readcap.

To illustrate how Blocktree can be used to enable collaboration between enterprises, consider a situation where
two companies wish to partner on the development of a product. To facilitate their collaboration, they want to
have a way to securely share data. One of the companies is selected to host the data and accepts the cost and
responsibility of serving it. The host company creates a directory which is used to store the data. The other
company will connect to the filesystem service in the host company’s domain to access data in the shared directory.
Each of the principals in the other company which need to access the data are provisioned in the shared directory.
During the provisioning process, assigns authorization attributes to these principals. Once the principals have
their writecaps, they can access the data in the shared directory by sending messages to the filesystem service
with the shared directory as the scope field and the rootward field set to true. This setup gives the hosting
company a lot of control over the data. If the other company wishes to protect its investment, it should use one
of its provisioned principals to subscribe to write events on the shared directory and all of its files, so that it can
copy written sectors out of the host company’s domain as soon as they’re written. Although it’s not possible to
directly subscribe to writes on the contents of a directory, by monitoring a directory for changes, it’s possible to
begin monitoring files as soon as they’re created.

5 Example Systems

This section contains examples of systems that could be built using Blocktree. The hope is to illustrate how
this platform can be used to implement existing applications more easily and to make it possible to implement
systems which are currently out of reach.

5.1 A distributed AI execution environment.

Neural networks are just vector-valued functions with vector inputs, albeit very complicated ones with potentially
billions of parameters. But, just like any other computation, these functions can be conceptualized as compu-
tational graphs. Imagine that you have a set of computers equipped AI accelerator hardware and you have a
neural network that is too large to be processed by any one of them. By partitioning the graph into small enough

15



subgraphs, we can break the network down into pieces which can be processed by each of the accelerators. The
full network can be stitched together by passing messages between each of these pieces.

Let us consider how this could be accomplished with Blocktree. We begin by provisioning a runtime on each
of the accelerator machines, each of which will have a new accelerator service registered. Messages will be sent
to the accelerator service describing the computational graph to execute, as well as the name of the actor to
which the output is to be sent. When such a message is received by an accelerator service provider, it spawns an
actor which compiles its subgraph to a kernel for its accelerator and remembers the name of the actor to send
its output to. An orchestrator actor will be responsible for partitioning the graph and sending these messages.
Ownership of the actors spawned by the accelerator service is given to the orchestrator actor, ensuring that they
will all be stopped when the orchestrator returns. When one of the spawned actors stops, it unloads the kernel
from the accelerator’s memory and returns it to its initial state. Note that the orchestrator actor must have
execute permissions on each of the accelerator runtimes in order to send messages to them. The orchestrator
dispatches messages to the accelerator service in reverse order of the flow of data in the computational graph, so
that it can tell each service provider where its output should be sent. The actors responsible for the last layer in
the computational graph send their output to the orchestrator. To begin the computation, the actors which are
responsible for input are given the filesystem path of the input data. The orchestrator learns of the completion
of the computation when it receives the output from final layer. It can then save these results to the filesystem
and return, thus ensuring all resources are released. Because inference and training can both be modeled by
computational graphs, this same procedure can be used for both.

5.2 A decentralized social media network.

One of the original motivations for designing Blocktree was to create a platform for a social network that puts
users in full control of their data. In the opinion of the author, the only way to actually accomplish this is for
users to host the data themselves. One might think it is possible to use client-side encryption to solve the privacy
problem, but this does not solve the full problem. While it is true that good client-side encryption will prevent
the service provider from reading the user’s data, the user could still loose everything if the service provider goes
out of business or simply decides to stop offering its service. Similarly, putting data in a federated system, such as
Mastodon or Nostr, also puts the user at risk of loosing their data if the server they use is permanently shutdown.
To have real control the user must host the data themselves. Then they decide how its encrypted, how its served,
and whether it continues to exist.

Let’s explore how Blocktree can be used to build a social media platform which provides this control. To
participate in this network each user will need to setup their own domain by generating new root credentials
and provisioning at least one runtime to host the social media service. A technical user could do this on their
own hardware by reading the Blocktree documentation, but a non-technical user might choose to purchase a new
router with Blocktree pre-installed. By connecting this router directly to their WAN, the user ensures that the
services running on it will always have direct internet access. The user can access the btconsole web GUI via
the router’s WiFi interface to generate their root credentials and provision new runtimes on their network.

A basic function of any social network is keeping track of a user’s contacts. This is accomplished by maintaining
the contacts as files in a well-known directory in the user’s domain. Each file in the directory is named using the
user defined nickname for the contact and its contents include the root principal of the contact as well as any
additional user defined attributes, such as physical address or telephone number. The root principal is used to
route messages to the social media service in the contact’s domain. When a user adds a new contact, a connection
message is sent to it, which the contact can choose to accept or reject. If accepted, the contact creates an entry
in its contacts directory for the user. The contact’s social media service will then accept future direct messages
from the user. When the user sends a direct message to the contact, its runtime dispatches the message to the
social media service in the contact’s domain. Once delivered, the contact’s social media service stores the message
in a directory for the user’s correspondence, sort of like an mbox directory but where messages are sorted into
directories based on sender rather than receiver.

Note that this procedure only works if a contact’s root principal can be resolved using the search domain
configured in the user’s runtime. We can ensure this is the case by configuring the runtime to use a search domain
that operates a Dynamic DNS (DDNS) service and by arranging with this service to create the correct records
to resolve the root principal. The author intends to operate such a service to facilitate the use of Blocktree by
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home users, but a more long-term solution is to implement a blockchain for resolving root principals. Only then
would the system be fully decentralized.

Making public posts is accomplished by creating files in a directory with the HTML contents of the post. This
file, the directory containing it, and all parents of it, would be configured to allow others to read, and in the case
of directories, execute them. At least one runtime with the filesystem service registered would need to have the
execute permission granted to others to allow anyone to access these files. When someone wanted to view the
posts of another user, they would dispatch messages to the filesystem service in the other user’s domain to read
these files from the well-known posts directory.

Of course user’s would not be using a file manager to interact with this social network, they would use their
browsers as they do now. This web interface would be served by the social media service in their domain. A
normal user who has a Blocktree enabled router would just type in a special hostname into their browser to open
this interface. Because the router provides DNS services to their network, it can generate the appropriate records
to ensure this name resolves to the address where the social media service is listening. The social media service
would be responsible for sending messages to other users’ domains to get their posts, and to the filesystem in
their own domain to display the user’s direct messages. All this file data would be used to populate the web
interface. It’s not hard to see how the same system could be used to serve any type of media: text, images, video,
immersive 3D worlds. All of these can be stored in files in the filesystem, and so all of them are accessible to
Blocktree actors.

One issue that must be addressed with this design is how it will scale to a large number of users accessing
it at once. In other words, what happens if a user goes viral? Currently, the way to solve this would be to add
more computers to the user’s network which run the sector and filesystem services. This is not ideal as it means
the user would need to buy more hardware. A better solution would be implement peer-to-peer distribution of
sector data in the filesystem and sector services. This would reduce the load on the user’s computers and allow
their follows to share the posted data with each other. This work is planned as a future enhancement.

5.3 A smart lock.

The access control language provided by Blocktree’s filesystem can be used for more than just authorizing access
to data. To illustrate this point, consider a smart lock installed on the front door of a company’s office building.
When the company first got the lock they used NFC to configure it to connect to their WiFi network. The
lock then used link-local runtime discovery to perform automatic provisioning. An IT administrator accessed
btconsole to approve the provisioning request and position the lock in a specific directory in the company’s
domain. Permission to actuate the lock is granted if a principal has execute permission on the lock’s file. To
verify the physical presence of an employee, NFC is used for the authentication handshake. When an employee
presses their NFC device, for instance their phone, to the lock, it generates a nonce and transmits it to the device.
The device then signs the nonce using the credentials it used during provisioning in the company’s domain. It
transmits this signature to the lock along with the path to the principal’s file in the domain. The lock then
reads this file to obtain the principal’s authorization attributes and its public key. It uses the public key to
validate the signature presented by the device. If this is successful, it then checks the authorization attributes
of the principal against the authorization attributes on its own file. If execute permissions are granted, the lock
actuates, allowing the employee access. The administrators of the company’s domain create a group specifically
for controlling physical access to the building. All employees with physical access permission are added to this
group, and the group is granted execute permission on the lock, rather than individual users.

5.4 A traditional three-tier web application.

While it’s hoped that Blocktree will enable interesting and novel applications, it can also be used to build the
kind of web applications that are common today. Suppose that we wish to build a three-tier web application.
Let’s explore how Blocktree could help.

First, we should consider which database to use. A traditional SQL database would be desirable, preferably
one which is open source and not owned by a large corporation with dubious motivations. These constraints
lead us to choose Postgres, but Postgres was not designed to run on Blocktree. However, Postgres does have a
container image available on docker hub, we can create a service to run this container image in our domain. But
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Postgres stores all of its data in the local filesystem of the machine it runs on. How can we ensure this does not
become a single point of failure? First, we should create a directory in our domain to hold the Postgres cluster
directory. Then we should procure at least three storage servers and provision runtimes hosted on each of them
in this directory. The sector service is registered on each of the runtimes, so all the data stored in the directory
will be replicated on each of the servers. Now, the Postgres service should be registered in one and only one of
these runtimes, as Postgres requires exclusive access to its database cluster. btfuse will be used to mount the
Postgres directory to a path in the local filesystem and the Postgres container will be configured to access it. We
now have to decide how other parts of the system are going to communicate with Postgres. We could have the
Postgres service setup port forwarding for the container, so that ordinary network connection can be used to talk
to it. But we will have to setup TLS if we want this to be secure. The alternative is to use Blocktree as a VPN
and proxy network communications in messages. This is accomplished by registering a proxy service in the same
runtime as the Postgres service and configuring it to allow traffic it receives to pass to the Postgres container’s
IP address on TCP port 5432.

In a separate directory, several runtimes are provisioned which will host the webapp service. This service
will use axum to serve the static assets to our site, including the Wasm modules which make up our frontend,
as well as our site’s backend. In order to do this, it will need to connect to the Postgres database. This is
accomplished by registering the proxy service in each of the runtimes hosting the webapp service. The proxy
service is configured to listen on TCP 127.0.0.1:5432 and forwards all traffic to the proxy service in the Postgres
directory. The webapp can then use the tokio-postgres crate to establish a TCP connection to 127.0.0.1:5432
and it will end up talking to the containerized Postgres instance.

Although the data in our database is stored redundantly, we do still have a single point of failure in our system,
namely the Postgres container. To handle this we can implement a failover service. It will work by calling the
Postgres service with heartbeat messages. If too many of these timeout, we assume the service is dead and start
a new instance one of the other runtimes in the Postgres directory. This new instance will have access to all the
same data as the failed instance, including its journal file. Assuming it can complete any in progress transactions,
the new service will come up after a brief delay and the system will recover.

5.5 A realtime geo-spacial environment.

If we are to believe science fiction, the natural evolution of human-computer interaction is the development of a
persistent virtual world that we use to communicate, conduct business, and enjoy our leisure. This kind of system
has been a dream for a long time, but as it’s grown closer to becoming a reality, the popular consciousness has
shifted against it. People are rightly horrified by the idea of giving control over their virtual worlds to the same
social media company that has a track record of causing societal harm. But this technology does not need to
be dystopian. If an open system can be built, which actually works, it can prevent the market from accepting a
closed system designed to lock in user attention and monetize them relentlessly. These systems are the future,
it’s only a question of who will own them.

Let’s explore how Blocktree can be used to build such a system. The world we’re going to render will be a
planet with a roughly spherical surface and a configurable radius ρ, which is a u32 value whose units are meters.
We’ll use latitude (ϕ) and longitude (λ) in radians to describe the locations of points on the surface. Both ϕ and
λ will take f64 values. The elevation of a point will be given by h, which is the deviation from ρ. h is measured
in meters and takes values in i32. So, the distance from the center of the planet to the point (ϕ, λ, h) is ρ+ h.

The data describing how to render a planet consists of its terrain mesh, terrain textures, and the objects on
its surface. This could represent a very large amount of data for a planet with realistic terrain populated by many
structures. To facilitate sharding this information over many different servers, the planet is broken into disjoint
regions, each of which is stored in its own directory. A single top-level directory represents the entire planet, and
contains a manifest describing it. This manifest specifies the planet’s name, its radius, its rotational period, the
size limit of its regions in MB, as well as any other global attributes. This top-level directory also contains the
texture for the sky box to render the view of space from the planet. In the future it may be interesting to explore
the creation of more dynamic cosmic environments, but a simple sky box has the advantage of being efficient.
The data in a planet is recursively broken into the fewest number of regions such that the amount of data in
each regions is less than the configured threshold. When a regions grows too large it is broken into four new
regions by cutting it along the centerline parallel to the ϕ axis, and the one parallel to the λ axis. In other words,
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it is divided in half north to south and east to west. The four new regions are stored in four subdirectories of
the original region’s directory named SE, SW, NE, and NW, depending on their location relative to the original
region. The data in the old region is then moved into the appropriate directories. The directory tree of a planet
essentially forms a quadtree, albeit one which is built up progressively.

In the leaf directories of this tree the actual data for a region are stored in two files, one which describes the
terrain and the other which describes objects. It’s expected that the terrain will rarely be modified, but that the
objects may change regularly. The terrain file contains the mesh vertices in the region as well as its textures. It
is organized as an R-tree to allow for efficient spacial queries based on player location. The region’s objects file
is also organized as an R-tree. It contains all of the graphical data for the objects to be rendered in the region,
including meshes, textures, and shaders.

The creation of a shared virtual world must involve players collaboratively building persistent structures. This
is allowed in a controlled way by defining plot objects. A plot is like a symbolic link, it points to a file whose
contents contain the data used to render the plot. This mechanisms allows the owner of the planet to delegate a
specific area on its surface to another player by creating a plot defining that area and pointing it to a file owned
by the other player. The other player can then write meshes, textures, and shaders into this file to describe the
contents of the plot. If the other player wishes to collaborate with others on the construction, they can grant
write access on the file to a third party. This is not unlike the ownership of land in the real world.

To facilitate viewing the planet from many distances, each interior node in the planet’s directory tree contains
a reduced level of detail (LOD) version of the terrain contained in it. For example, the top-level directory contains
the lowest LOD mesh and textures for the terrain. This LOD would be suitable for rendering the planet as a
globe on a shelf, or as it would appear from a high orbit. By traversing the directory tree, the LOD can be
increased as the player travels closer to the surface. This system assists with rendering an animation where the
player appears to approach and land upon the planet’s surface.

By dividing the planet’s data into different leaf directories, it becomes possible to provision computers running
the sector and filesystem services in each of them. This divides the storage and bandwidth requirements for serving
the planet over this set of servers. In addition to serving these data, another service is needed to keep track of
player positions and execute game logic. Game clients address their messages using the directory of the region
their player is located in, and set rootward to true. These messages are delivered to the closest game server to
the region the player is in, which may be located in the region’s directory or higher up the tree. When a player
approaches the border of a region, its game client begins dispatching messages to the adjacent directories as well.

6 Conclusion

There have been many attempts to create a distributed Unix over the years. Time has shown that this is a
difficult problem, but time has not diminished its importance. IT systems are more complex now than ever, with
many layers of abstraction that have built up over time. As users, we’ve suffered greatly from systems which
were never designed to be secure on the hostile internet that exists today. Security has been bolted onto these
systems (HTTPS, STARTTLS, DNSSEC) in a backwards compatible way, which results in weakened protections.
What’s worse, the entire trust model of the web relies on the ludicrous idea that there is a distinguished group of
certificate authorities who have the power to secure our communications. We need to take a different approach.
Data should be certified by its path, it must always be transported between processes in an authenticated manner,
and user code should never have to care how this is accomplished.

The typical internet user stores all their important data in the cloud with third-party service providers. They
do this because of the convenience of being able to access this information from anywhere, and because of the
perceived safety in having a large internet company look after it for them. This convenience comes at the price
of putting users at the mercy of these companies. Take email for example, a service which is near universally
used for account recovery, password reset, and login verification. If a service provided decided to stop providing
a user access to their email, the user would be effectively cut off from their online life, which is effectively their
entire life. There is no technical reason for things to be this way. Blocktree allows users to host their own services
in their own domain. If we can make setting up an email or social media server as simple as clicking a button
in a web GUI, there will be no convenience advantage to using cloud services. If more users begin hosting their
own services, the internet will become more distributed, which will make it more resistent to disruption and
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censorship.
Cloud computing has also driven changes in the way businesses acquire computing resources. It’s common for

startups to rent all of their computing resources from one large cloud provider and there are compelling economic
and technical reasons to do this. But, as a firm grows they often experience growing pains as their cloud bills grow
with them. If the firm has not developed their software with a multi-cloud, or hybrid approach in mind, they may
face the prospect of major changes in order to bring their application on-prem or to a rival cloud. By developing
their application on Blocktree, businesses have a single platform to target which can run on rented computers in
the cloud just as easily as servers in their own data center. This ensures the choice to rent or buy can be made on
a purely economic basis. Blocktree is not the only system that provides flexibility. The portability of containers
is one of the reasons they’ve become so popular, and they have their place, but they are a lower-level abstraction
which require developers to solve many of the problems that Blocktree could handle for them.

Ransomware attacks and data breaches are embarrassingly common. There are many reasons for this, from
the reliance on passwords for authentication, to the complexity of the software supply chain, but it’s clear that
as IT professionals we need to do more to keep the systems under our protection safe. Blocktree helps us do this
by solving many of the difficult problems involved with securing communication on a hostile network. It takes a
true zero-trust approach, ensuring that all communications between processes is authenticated using public key
cryptography. Data at rest is also secured with encryption and integrity protection. No security system can
prevent all attacks, but by putting these mechanisms together in an easy to use platform, we can advance the
status quo for secure computing.

When Unix was first developed in the 1970’s, its authors could not have foreseen the applications that would
be enabled by their system. Although there have been many different kinds of Unices over the years, the core
programming model, built around the filesystem, has remained since the beginning. It’s a testament to the
importance of this abstraction that it’s persisted for so long. No designer can foresee all the ways that their
abstractions will be used, but they can try to build them in such a way that as much choice is left to the user as
possible. By making the actor model, and messaging passing, the core of Blocktree, it is hoped that low overhead
communication between distributed components can be achieved. By using this system to provide a global
distributed filesystem, it is hoped that the interoperable sharing of data can be achieved. And by using protocol
contracts to constrain actor communication, it is hoped that structure and safety can bring order to distributed
computation. While it’s possible to see some of the applications that can be built from these abstractions, their
composability and the creativity of developers will lead to systems that cannot be foreseen.
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